Open vgg4resnet opened 4 years ago
def infer_facepic(self):
'''
faces : list of PIL Image
target_embs : [n, 512] computed embeddings of faces in facebank
names : recorded names of faces in facebank
tta : test time augmentation (hfilp, that's all)
'''
self.facemodel.eval()
self.netG.train(True)
self.netG.eval()
idx = 0
embs = []
tta=False
faces=self.findfacenames
listSpeacialFiles=["3_0005.jpg","3_0007.jpg","3_0010.jpg","3_0012.jpg","3_0013.jpg",
# "lja_0016.jpg","lja_0017.jpg",
# "newmate_0018.jpg","newmate_0019.jpg","newmate_0010.jpg","newmate_0019.jpg",
# "dexing_0032.jpg","dexing_0056.jpg",
# "maoli_0015.jpg"
]
totalfaceloss=0
iSum=0
for i ,imgpys in enumerate( faces):
####get imageA generate from Deblur netG model
myimg=cv2.imread(imgpy)
myimg=cv2.resize(myimg,(256,256))
pred=self.fpnpredictonline(myimg,self.maskface)
img=Image.fromarray(pred)
pred=cv2.resize(pred,(112,112))
####get imageA's comparing face feature vectors
embs1=self.facemodel(self.test_transform(img).to(self.devicess).unsqueeze(0)).detach().cpu().numpy().reshape(1,-1)
####get imageB generate from Deblur netG model
imgpy=imgpys[1]
myimg=cv2.imread(imgpy)
myimg=cv2.resize(myimg,(256,256))
pred=self.fpnpredictonline(myimg,self.maskface)
img=Image.fromarray(pred)
####get imageB's comparing face feature vectors
embs2=self.facemodel(self.test_transform(img).to(self.devicess).unsqueeze(0)).detach().cpu().numpy().reshape(1,-1)
####comparing A,B images loss ,adding them together as new part of G loss
totalfaceloss=totalfaceloss+1-cosine_similarity(embs1,embs2)[0][0]
newimgpy=imgpy.replace(".jpg",".88fd")
import numpy as np
#np.savetxt(newimgpy,embs1)
#print(totalfaceloss*1.0/((len(faces))*1.0),totalfaceloss,len(faces))
print("xxxxxxxxxxxxxxxxxxxxxxx\n",totalfaceloss*1.0/(iSum*1.0),totalfaceloss,iSum)
#self.lossReAutoGrad=totalfaceloss*1.0/((len(faces))*1.0)
self.lossReAutoGrad=totalfaceloss*1.0/(iSum*1.0)
self.netG.train(True)
myReAutoGrad=self.lossReAutoGrad
min_idx, minimum=0,0
above is somecode i used to create a new part loss of G : this part code is generate news Images pairs,and calucating the the loss A (self.lossReAutoGrad) ["3_0005.jpg","3_0007.jpg","3_0010.jpg","3_0012.jpg","3_0013.jpg", ] are images ,they failed in face recognition part due to heavily motion blured ,faces are image pairs
def fpnpredictonline(self, img: np.ndarray, mask: Optional[np.ndarray], ignore_mask=True) -> np.ndarray:
(img, mask), h, w = self._preprocess(img, mask)
with torch.no_grad():
inputs = [img.cuda()]
if not ignore_mask:
inputs += [mask]
import pdb
#pdb.set_trace()
pred = self.netG(*inputs)
return self._postprocess(pred)[:h, :w, :]
adding the loss to net work G'loss
def _run_epoch(self, epoch):
self.metric_counter.clear()
for param_group in self.optimizer_G.param_groups:
lr = param_group['lr']
epoch_size = config.get('train_batches_per_epoch') or len(self.train_dataset)
tq = tqdm.tqdm(self.train_dataset, total=epoch_size)
tq.set_description('Epoch {}, lr {}'.format(epoch, lr))
i = 0
for data in tq:
inputs, targets = self.model.get_input(data)
#outputs = self.netG(inputs)
#outputs,outputs_full = self.netG(inputs)
outputs = self.netG(inputs)
#print(outputs.shape,inputs.shape)
#pdb.set_trace()
_,_,AutoReloss=self.infer_facepic()
self.reloss=AutoReloss
loss_D = self._update_d(outputs, targets)
self.optimizer_G.zero_grad()
loss_content = self.criterionG(outputs, targets)
loss_adv = self.adv_trainer.loss_g(outputs, targets)
print("xxxxxxxxxxxxxxxxxxxxxxx\n",loss_content , self.adv_lambda , loss_adv,27*AutoReloss)
**###########adding the face recognition loss to G loss**
loss_G = loss_content + self.adv_lambda * loss_adv+0.7*AutoReloss
#loss_G =0*loss_content + 0*self.adv_lambda * loss_adv+27*AutoReloss
loss_G.backward(retain_graph=True)
loss_G.backward()
self.optimizer_G.step()
self.metric_counter.add_losses(loss_G.item(), loss_content.item(), loss_D)
I want to know how to decrea the self.lossReAutoGrad (the face recognition assuming name is the loss A ),and I wonder my way of adding the lossA to the lossD works。the loss can backward or not ?thanks in advanced
anyone can help me?
@KupynOrest @t-martyniuk can you help me ,or give me some cues?
hi, I am trying to do a face recognition project 。Some of my Images are motion blured baddly,my trained face recognition model mobilefacenet(this trained model is fixed ) get bad results 。I want to use the deblur gan model to improve my images qualities。 I want to use the trained face recognition model as Auxiliary Classifier to control the loss,So I can improve the accuracy of face recognition 。my idea is giving some image pairs from the same persons,the deblur G model can generate some new imgs for those same persons pairs。And using the mobilefacnet recognition model calucate as a new loss to the nework。If the recognition loss drops ,the selected images pairs quality probably impoved 。 And My way is that I calculate the cos distance between fixed images pairs , and then adding them together as new loss A 。then adding the loss A to loss D or loss G, by decreasing the new loss A, the face recognition accuracy may impove , the images quality may improve ,However ,when I added the loss A to loss D part ,the new part lossA drop slowly ,and can not converge ,the loss drop from 14 to 13 ,keep staying in around 13, I guess i mistook something ,can My idea works?