Open camposandro opened 1 year ago
Before | After | Ratio | Method |
---|---|---|---|
[bb96e8d4] | [0d106bca] | ||
<v0.0.3> | |||
failed | failed | n/a | inference_suite.InferenceSuite.time_dynesty_inference |
failed | failed | n/a | inference_suite.InferenceSuite.time_numpyro_nuts_inference |
failed | failed | n/a | inference_suite.InferenceSuite.time_numpyro_svi_inference |
failed | failed | n/a | sampling_suite.SamplingSuite.time_dynesty_single_file |
failed | failed | n/a | sampling_suite.SamplingSuite.time_nuts_single_file |
failed | failed | n/a | sampling_suite.SamplingSuite.time_svi_single_file |
Click here to view all benchmarks.
Merging #153 (caa84b2) into main (91e5b55) will decrease coverage by
0.25%
. Report is 1 commits behind head on main. The diff coverage is30.79%
.
@@ Coverage Diff @@
## main #153 +/- ##
==========================================
- Coverage 78.49% 78.25% -0.25%
==========================================
Files 36 39 +3
Lines 2785 2837 +52
==========================================
+ Hits 2186 2220 +34
- Misses 599 617 +18
Files | Coverage Δ | |
---|---|---|
src/superphot_plus/file_paths.py | 100.00% <100.00%> (ø) |
|
src/superphot_plus/import_utils.py | 100.00% <100.00%> (ø) |
|
src/superphot_plus/model/classifier.py | 94.85% <100.00%> (+0.71%) |
:arrow_up: |
src/superphot_plus/model/data.py | 100.00% <ø> (+4.00%) |
:arrow_up: |
src/superphot_plus/samplers/licu_sampler.py | 96.20% <100.00%> (ø) |
|
src/superphot_plus/samplers/sampler.py | 100.00% <100.00%> (ø) |
|
src/superphot_plus/surveys/surveys.py | 98.14% <100.00%> (+0.03%) |
:arrow_up: |
src/superphot_plus/plotting/classifier_results.py | 53.75% <85.71%> (+0.13%) |
:arrow_up: |
src/superphot_plus/model/mlp.py | 93.61% <93.61%> (ø) |
|
src/superphot_plus/format_data_ztf.py | 88.23% <33.33%> (-2.25%) |
:arrow_down: |
... and 8 more |
... and 1 file with indirect coverage changes
:mega: We’re building smart automated test selection to slash your CI/CD build times. Learn more
Before | After | Ratio | Method |
---|---|---|---|
[ffff2e13] | [efced54c] | ||
4.45±0.06s | 4.69±0.1s | 1.05 | inference_suite.InferenceSuite.time_dynesty_inference |
8.39±0s | 8.53±0.02s | 1.02 | sampling_suite.SamplingSuite.time_svi_single_file |
8.48±0.07s | 8.47±0.07s | 1 | inference_suite.InferenceSuite.time_numpyro_svi_inference |
12.8±2s | 12.8±2s | 1 | inference_suite.InferenceSuite.time_numpyro_nuts_inference |
4.32±0.04s | 4.28±0.02s | 0.99 | sampling_suite.SamplingSuite.time_dynesty_single_file |
13.0±2s | 12.7±1s | 0.98 | sampling_suite.SamplingSuite.time_nuts_single_file |
Click here to view all benchmarks.
Before | After | Ratio | Method |
---|---|---|---|
[1b18cf73] | [08076c21] | ||
4.44±0.1s | 4.85±0.2s | 1.09 | inference_suite.InferenceSuite.time_dynesty_inference |
4.23±0.03s | 4.32±0.01s | 1.02 | sampling_suite.SamplingSuite.time_dynesty_single_file |
8.20±0.01s | 8.29±0.03s | 1.01 | inference_suite.InferenceSuite.time_numpyro_svi_inference |
12.4±1s | 12.4±1s | 0.99 | inference_suite.InferenceSuite.time_numpyro_nuts_inference |
8.20±0.02s | 8.13±0.02s | 0.99 | sampling_suite.SamplingSuite.time_svi_single_file |
15.3±0.02s | 12.3±1s | ~0.81 | sampling_suite.SamplingSuite.time_nuts_single_file |
Click here to view all benchmarks.
Before | After | Ratio | Method |
---|---|---|---|
[e3e188d1] | [0aa03e0a] | ||
9.44±0.1s | 12.4±1s | ~1.31 | inference_suite.InferenceSuite.time_numpyro_nuts_inference |
3.77±0s | 3.85±0.02s | 1.02 | sampling_suite.SamplingSuite.time_dynesty_single_file |
121±0.2ms | 124±0.3ms | 1.02 | sampling_suite.SamplingSuite.time_iminuit_single_file |
4.11±0.2s | 4.15±0.05s | 1.01 | inference_suite.InferenceSuite.time_dynesty_inference |
164±0.4ms | 164±0.2ms | 1.00 | sampling_suite.SamplingSuite.time_licu_mcmc_ceres_single_file |
8.06±0.05s | 7.98±0s | 0.99 | inference_suite.InferenceSuite.time_numpyro_svi_inference |
9.34±0.06ms | 9.21±0.03ms | 0.99 | sampling_suite.SamplingSuite.time_licu_ceres_single_file |
8.10±0.01s | 7.96±0.03s | 0.98 | sampling_suite.SamplingSuite.time_svi_single_file |
14.9±0.06s | 12.1±1s | ~0.81 | sampling_suite.SamplingSuite.time_nuts_single_file |
Click here to view all benchmarks.
Before | After | Ratio | Method |
---|---|---|---|
[6dc9f47e] | [3cd58259] | ||
8.90±0.01s | 11.5±1s | ~1.29 | inference_suite.InferenceSuite.time_numpyro_nuts_inference |
9.02±0.02ms | 9.00±0.02ms | 1.00 | sampling_suite.SamplingSuite.time_licu_ceres_single_file |
7.57±0.01s | 7.54±0.03s | 1.00 | sampling_suite.SamplingSuite.time_svi_single_file |
163±0.2ms | 162±0.3ms | 1.00 | sampling_suite.SamplingSuite.time_licu_mcmc_ceres_single_file |
125±3ms | 124±0.7ms | 0.99 | sampling_suite.SamplingSuite.time_iminuit_single_file |
3.86±0.1s | 3.81±0s | 0.99 | sampling_suite.SamplingSuite.time_dynesty_single_file |
7.61±0.01s | 7.46±0.01s | 0.98 | inference_suite.InferenceSuite.time_numpyro_svi_inference |
4.19±0.2s | 3.89±0.03s | 0.93 | inference_suite.InferenceSuite.time_dynesty_inference |
14.3±0.01s | 11.5±1s | ~0.81 | sampling_suite.SamplingSuite.time_nuts_single_file |
Click here to view all benchmarks.
Before | After | Ratio | Method |
---|---|---|---|
[6dc9f47e] | [4993f77f] | ||
8.74±0.02s | 11.3±1s | ~1.30 | sampling_suite.SamplingSuite.time_nuts_single_file |
4.01±0.1s | 4.14±0.05s | 1.03 | inference_suite.InferenceSuite.time_dynesty_inference |
8.95±0.03ms | 9.09±0.06ms | 1.01 | sampling_suite.SamplingSuite.time_licu_ceres_single_file |
7.34±0.01s | 7.38±0.01s | 1.00 | sampling_suite.SamplingSuite.time_svi_single_file |
7.38±0.01s | 7.41±0.02s | 1.00 | inference_suite.InferenceSuite.time_numpyro_svi_inference |
11.3±1s | 11.3±1s | 1.00 | inference_suite.InferenceSuite.time_numpyro_nuts_inference |
3.81±0.01s | 3.78±0.03s | 0.99 | sampling_suite.SamplingSuite.time_dynesty_single_file |
124±0.6ms | 122±0.6ms | 0.99 | sampling_suite.SamplingSuite.time_iminuit_single_file |
164±2ms | 161±0.2ms | 0.98 | sampling_suite.SamplingSuite.time_licu_mcmc_ceres_single_file |
Click here to view all benchmarks.
Before | After | Ratio | Method |
---|---|---|---|
[6dc9f47e] | [9b7783ba] | ||
11.7±1s | 12.0±1s | 1.03 | sampling_suite.SamplingSuite.time_nuts_single_file |
162±0.2ms | 166±3ms | 1.02 | sampling_suite.SamplingSuite.time_licu_mcmc_ceres_single_file |
4.13±0.1s | 4.21±0.02s | 1.02 | inference_suite.InferenceSuite.time_dynesty_inference |
8.99±0.03ms | 9.13±0.09ms | 1.01 | sampling_suite.SamplingSuite.time_licu_ceres_single_file |
122±0.1ms | 123±0.2ms | 1.01 | sampling_suite.SamplingSuite.time_iminuit_single_file |
7.62±0.06s | 7.66±0.03s | 1.01 | sampling_suite.SamplingSuite.time_svi_single_file |
7.57±0.02s | 7.57±0s | 1 | inference_suite.InferenceSuite.time_numpyro_svi_inference |
3.78±0s | 3.77±0.02s | 1 | sampling_suite.SamplingSuite.time_dynesty_single_file |
8.90±0.01s | 8.90±0.06s | 1 | inference_suite.InferenceSuite.time_numpyro_nuts_inference |
Click here to view all benchmarks.
Before | After | Ratio | Method |
---|---|---|---|
[6dc9f47e] | [af33c5a3] | ||
12.0±0.07ms | 15.5±4ms | ~1.30 | sampling_suite.SamplingSuite.time_licu_ceres_single_file |
8.36±0.07s | 8.82±0.01s | 1.06 | sampling_suite.SamplingSuite.time_dynesty_single_file |
211±2ms | 214±10ms | 1.01 | sampling_suite.SamplingSuite.time_licu_mcmc_ceres_single_file |
8.04±0.1s | 8.10±0.2s | 1.01 | inference_suite.InferenceSuite.time_dynesty_inference |
13.6±0.08s | 13.4±0.03s | 0.99 | sampling_suite.SamplingSuite.time_svi_single_file |
13.6±0.2s | 13.2±0.02s | 0.97 | inference_suite.InferenceSuite.time_numpyro_svi_inference |
215±10ms | 207±2ms | 0.96 | sampling_suite.SamplingSuite.time_iminuit_single_file |
18.9±2s | 14.9±0.08s | ~0.79 | inference_suite.InferenceSuite.time_numpyro_nuts_inference |
23.7±0.02s | 14.8±0.05s | 0.62 | sampling_suite.SamplingSuite.time_nuts_single_file |
Click here to view all benchmarks.
Before | After | Ratio | Method |
---|---|---|---|
[91e5b551] | [734b61f2] | ||
9.00±0.03s | 14.1±0.04s | ~1.57 | sampling_suite.SamplingSuite.time_nuts_single_file |
7.51±0.03s | 7.69±0.04s | 1.02 | inference_suite.InferenceSuite.time_numpyro_svi_inference |
8.99±0.08ms | 9.03±0.02ms | 1.00 | sampling_suite.SamplingSuite.time_licu_ceres_single_file |
162±0.3ms | 162±0.2ms | 1.00 | sampling_suite.SamplingSuite.time_licu_mcmc_ceres_single_file |
11.5±1s | 11.6±1s | 1.00 | inference_suite.InferenceSuite.time_numpyro_nuts_inference |
121±0.4ms | 122±0.5ms | 1.00 | sampling_suite.SamplingSuite.time_iminuit_single_file |
7.52±0.04s | 7.52±0.07s | 1.00 | sampling_suite.SamplingSuite.time_svi_single_file |
3.74±0.02s | 3.73±0.01s | 1.00 | sampling_suite.SamplingSuite.time_dynesty_single_file |
3.98±0.1s | 3.94±0.05s | 0.99 | inference_suite.InferenceSuite.time_dynesty_inference |
Click here to view all benchmarks.
Before | After | Ratio | Method |
---|---|---|---|
[02dfdf5a] | [e345884f] | ||
15.5±2s | 18.5±0.01s | ~1.19 | inference_suite.InferenceSuite.time_numpyro_nuts_inference |
11.1±0.02ms | 11.3±0.2ms | 1.02 | sampling_suite.SamplingSuite.time_licu_ceres_single_file |
152±2ms | 154±5ms | 1.02 | sampling_suite.SamplingSuite.time_iminuit_single_file |
15.0±2s | 15.2±2s | 1.01 | sampling_suite.SamplingSuite.time_nuts_single_file |
9.88±0s | 9.96±0.03s | 1.01 | inference_suite.InferenceSuite.time_numpyro_svi_inference |
5.23±0.02s | 5.26±0.01s | 1.01 | sampling_suite.SamplingSuite.time_dynesty_single_file |
216±0.4ms | 216±0.4ms | 1.00 | sampling_suite.SamplingSuite.time_licu_mcmc_ceres_single_file |
5.68±0.03s | 5.67±0.08s | 1.00 | inference_suite.InferenceSuite.time_dynesty_inference |
9.92±0.02s | 9.91±0.04s | 1.00 | sampling_suite.SamplingSuite.time_svi_single_file |
Click here to view all benchmarks.
Before | After | Ratio | Method |
---|---|---|---|
[02dfdf5a] | [6735b89d] | ||
14.0±2s | 17.4±0s | ~1.24 | sampling_suite.SamplingSuite.time_nuts_single_file |
9.98±0.2ms | 10.6±0.3ms | 1.06 | sampling_suite.SamplingSuite.time_licu_ceres_single_file |
5.01±0.09s | 5.29±0.1s | 1.06 | inference_suite.InferenceSuite.time_dynesty_inference |
148±5ms | 152±6ms | 1.03 | sampling_suite.SamplingSuite.time_iminuit_single_file |
4.90±0.09s | 4.93±0.06s | 1.01 | sampling_suite.SamplingSuite.time_dynesty_single_file |
9.14±0s | 9.18±0.04s | 1.00 | sampling_suite.SamplingSuite.time_svi_single_file |
14.1±2s | 14.1±1s | 1.00 | inference_suite.InferenceSuite.time_numpyro_nuts_inference |
9.27±0.04s | 9.27±0.04s | 1.00 | inference_suite.InferenceSuite.time_numpyro_svi_inference |
207±5ms | 204±3ms | 0.99 | sampling_suite.SamplingSuite.time_licu_mcmc_ceres_single_file |
Click here to view all benchmarks.
Before | After | Ratio | Method |
---|---|---|---|
[02dfdf5a] | [82f0bf8a] | ||
9.07±0.01s | 11.7±1s | ~1.29 | inference_suite.InferenceSuite.time_numpyro_nuts_inference |
4.03±0.1s | 4.15±0.1s | 1.03 | inference_suite.InferenceSuite.time_dynesty_inference |
9.14±0.06ms | 9.23±0.2ms | 1.01 | sampling_suite.SamplingSuite.time_licu_ceres_single_file |
123±0.6ms | 124±0.8ms | 1.01 | sampling_suite.SamplingSuite.time_iminuit_single_file |
7.82±0.02s | 7.84±0.02s | 1.00 | sampling_suite.SamplingSuite.time_svi_single_file |
11.7±1s | 11.7±1s | 1.00 | sampling_suite.SamplingSuite.time_nuts_single_file |
163±0.2ms | 163±0.3ms | 1.00 | sampling_suite.SamplingSuite.time_licu_mcmc_ceres_single_file |
3.83±0.02s | 3.80±0.02s | 0.99 | sampling_suite.SamplingSuite.time_dynesty_single_file |
7.79±0.01s | 7.70±0.05s | 0.99 | inference_suite.InferenceSuite.time_numpyro_svi_inference |
Click here to view all benchmarks.
Before | After | Ratio | Method |
---|---|---|---|
[02dfdf5a] | [940b0e79] | ||
5.06±0.04s | 5.15±0s | 1.02 | sampling_suite.SamplingSuite.time_dynesty_single_file |
10.6±0.02ms | 10.8±0.1ms | 1.02 | sampling_suite.SamplingSuite.time_licu_ceres_single_file |
148±3ms | 150±1ms | 1.01 | sampling_suite.SamplingSuite.time_iminuit_single_file |
14.6±2s | 14.6±2s | 1.01 | sampling_suite.SamplingSuite.time_nuts_single_file |
208±0.2ms | 208±0.1ms | 1.00 | sampling_suite.SamplingSuite.time_licu_mcmc_ceres_single_file |
9.61±0.01s | 9.61±0s | 1.00 | sampling_suite.SamplingSuite.time_svi_single_file |
9.64±0.01s | 9.58±0.02s | 0.99 | inference_suite.InferenceSuite.time_numpyro_svi_inference |
5.68±0.1s | 5.46±0.2s | 0.96 | inference_suite.InferenceSuite.time_dynesty_inference |
17.9±0.05s | 11.7±0.2s | ~0.65 | inference_suite.InferenceSuite.time_numpyro_nuts_inference |
Click here to view all benchmarks.
Before | After | Ratio | Method |
---|---|---|---|
[02dfdf5a] | [829315d5] | ||
14.7±0.3s | 18.7±2s | ~1.27 | sampling_suite.SamplingSuite.time_nuts_single_file |
7.05±0.02s | 7.88±0.1s | ~1.12 | inference_suite.InferenceSuite.time_dynesty_inference |
206±3ms | 219±4ms | 1.06 | sampling_suite.SamplingSuite.time_iminuit_single_file |
8.03±0.05s | 8.48±0.05s | 1.06 | sampling_suite.SamplingSuite.time_dynesty_single_file |
224±3ms | 228±5ms | 1.02 | sampling_suite.SamplingSuite.time_licu_mcmc_ceres_single_file |
13.6±0.1s | 13.5±0.09s | 1.00 | sampling_suite.SamplingSuite.time_svi_single_file |
13.4±0.01s | 13.3±0.08s | 0.99 | inference_suite.InferenceSuite.time_numpyro_svi_inference |
23.8±0.01s | 23.6±0.2s | 0.99 | inference_suite.InferenceSuite.time_numpyro_nuts_inference |
13.3±0.3ms | 12.3±0.2ms | 0.92 | sampling_suite.SamplingSuite.time_licu_ceres_single_file |
Click here to view all benchmarks.
Before | After | Ratio | Method |
---|---|---|---|
[02dfdf5a] | [9e0718e7] | ||
13.3±0.05s | 17.7±2s | ~1.33 | inference_suite.InferenceSuite.time_numpyro_nuts_inference |
7.10±0s | 7.34±0.03s | 1.03 | inference_suite.InferenceSuite.time_dynesty_inference |
195±4ms | 198±3ms | 1.02 | sampling_suite.SamplingSuite.time_iminuit_single_file |
12.4±0.01s | 12.6±0.03s | 1.02 | inference_suite.InferenceSuite.time_numpyro_svi_inference |
11.6±0.3ms | 11.7±0.3ms | 1.01 | sampling_suite.SamplingSuite.time_licu_ceres_single_file |
7.71±0.08s | 7.77±0.07s | 1.01 | sampling_suite.SamplingSuite.time_dynesty_single_file |
218±3ms | 219±3ms | 1.01 | sampling_suite.SamplingSuite.time_licu_mcmc_ceres_single_file |
12.5±0.05s | 12.4±0.02s | 1.00 | sampling_suite.SamplingSuite.time_svi_single_file |
21.4±0.08s | 17.6±2s | ~0.82 | sampling_suite.SamplingSuite.time_nuts_single_file |
Click here to view all benchmarks.
Creates a regression model that attempts to predict supernovae physical properties (bfield, spin, mejecta, vejecta) from light curve posterior sample data. It also integrates with RayTune for model hyper parameter optimization.
Code Quality