VainF / Torch-Pruning

[CVPR 2023] DepGraph: Towards Any Structural Pruning
https://arxiv.org/abs/2301.12900
MIT License
2.73k stars 335 forks source link

yolov5 pruning model does not detect images #286

Open AFallDay opened 1 year ago

AFallDay commented 1 year ago

Before Pruning: MACs=1.009904 G, #Params=0.007226 G After Pruning: MACs=0.379899 G, #Params=0.002635 G image 1/128 D:\Torch-Pruning-master\data\coco128\images\train2017\000000000009.jpg: 480x640 (no detections), 101.8ms image 2/128 D:\Torch-Pruning-master\data\coco128\images\train2017\000000000025.jpg: 448x640 (no detections), 82.9ms image 3/128 D:\Torch-Pruning-master\data\coco128\images\train2017\000000000030.jpg: 448x640 (no detections), 71.5ms image 4/128 D:\Torch-Pruning-master\data\coco128\images\train2017\000000000034.jpg: 448x640 (no detections), 69.0ms image 5/128 D:\Torch-Pruning-master\data\coco128\images\train2017\000000000036.jpg: 640x512 (no detections), 91.1ms image 6/128 D:\Torch-Pruning-master\data\coco128\images\train2017\000000000042.jpg: 480x640 (no detections), 77.8ms image 7/128 D:\Torch-Pruning-master\data\coco128\images\train2017\000000000049.jpg: 640x512 (no detections), 84.7ms image 8/128 D:\Torch-Pruning-master\data\coco128\images\train2017\000000000061.jpg: 512x640 (no detections), 89.4ms image 9/128 D:\Torch-Pruning-master\data\coco128\images\train2017\000000000064.jpg: 640x480 (no detections), 83.9ms image 10/128 D:\Torch-Pruning-master\data\coco128\images\train2017\000000000071.jpg: 448x640 (no detections), 75.2ms image 11/128 D:\Torch-Pruning-master\data\coco128\images\train2017\000000000072.jpg: 640x448 (no detections), 84.1ms image 12/128 D:\Torch-Pruning-master\data\coco128\images\train2017\000000000073.jpg: 640x576 (no detections), 106.5ms image 13/128 D:\Torch-Pruning-master\data\coco128\images\train2017\000000000074.jpg: 448x640 (no detections), 70.4ms image 14/128 D:\Torch-Pruning-master\data\coco128\images\train2017\000000000077.jpg: 480x640 (no detections), 79.0ms image 15/128 D:\Torch-Pruning-master\data\coco128\images\train2017\000000000078.jpg: 640x640 (no detections), 116.0ms image 16/128 D:\Torch-Pruning-master\data\coco128\images\train2017\000000000081.jpg: 448x640 (no detections), 75.0ms image 17/128 D:\Torch-Pruning-master\data\coco128\images\train2017\000000000086.jpg: 640x512 (no detections), 78.2ms image 18/128 D:\Torch-Pruning-master\data\coco128\images\train2017\000000000089.jpg: 480x640 (no detections), 77.8ms image 19/128 D:\Torch-Pruning-master\data\coco128\images\train2017\000000000092.jpg: 448x640 (no detections), 72.0ms image 20/128 D:\Torch-Pruning-master\data\coco128\images\train2017\000000000094.jpg: 448x640 (no detections), 73.5ms image 21/128 D:\Torch-Pruning-master\data\coco128\images\train2017\000000000109.jpg: 416x640 (no detections), 88.5ms image 22/128 D:\Torch-Pruning-master\data\coco128\images\train2017\000000000110.jpg: 480x640 (no detections), 76.1ms image 23/128 D:\Torch-Pruning-master\data\coco128\images\train2017\000000000113.jpg: 640x416 (no detections), 79.8ms image 24/128 D:\Torch-Pruning-master\data\coco128\images\train2017\000000000127.jpg: 512x640 (no detections), 89.1ms image 25/128 D:\Torch-Pruning-master\data\coco128\images\train2017\000000000133.jpg: 480x640 (no detections), 80.7ms image 26/128 D:\Torch-Pruning-master\data\coco128\images\train2017\000000000136.jpg: 480x640 (no detections), 78.8ms image 27/128 D:\Torch-Pruning-master\data\coco128\images\train2017\000000000138.jpg: 576x640 (no detections), 109.7ms image 28/128 D:\Torch-Pruning-master\data\coco128\images\train2017\000000000142.jpg: 640x480 (no detections), 80.5ms image 29/128 D:\Torch-Pruning-master\data\coco128\images\train2017\000000000143.jpg: 544x640 (no detections), 100.0ms image 30/128 D:\Torch-Pruning-master\data\coco128\images\train2017\000000000144.jpg: 480x640 (no detections), 76.2ms image 31/128 D:\Torch-Pruning-master\data\coco128\images\train2017\000000000149.jpg: 448x640 (no detections), 74.3ms image 32/128 D:\Torch-Pruning-master\data\coco128\images\train2017\000000000151.jpg: 640x480 (no detections), 84.7ms image 33/128 D:\Torch-Pruning-master\data\coco128\images\train2017\000000000154.jpg: 640x448 (no detections), 69.5ms image 34/128 D:\Torch-Pruning-master\data\coco128\images\train2017\000000000164.jpg: 480x640 (no detections), 77.3ms image 35/128 D:\Torch-Pruning-master\data\coco128\images\train2017\000000000165.jpg: 544x640 (no detections), 90.5ms image 36/128 D:\Torch-Pruning-master\data\coco128\images\train2017\000000000192.jpg: 480x640 (no detections), 78.4ms image 37/128 D:\Torch-Pruning-master\data\coco128\images\train2017\000000000194.jpg: 480x640 (no detections), 76.0ms image 38/128 D:\Torch-Pruning-master\data\coco128\images\train2017\000000000196.jpg: 480x640 (no detections), 80.3ms image 39/128 D:\Torch-Pruning-master\data\coco128\images\train2017\000000000201.jpg: 448x640 (no detections), 71.8ms image 40/128 D:\Torch-Pruning-master\data\coco128\images\train2017\000000000208.jpg: 480x640 (no detections), 78.2ms image 41/128 D:\Torch-Pruning-master\data\coco128\images\train2017\000000000241.jpg: 640x480 (no detections), 81.9ms image 42/128 D:\Torch-Pruning-master\data\coco128\images\train2017\000000000247.jpg: 448x640 (no detections), 76.5ms image 43/128 D:\Torch-Pruning-master\data\coco128\images\train2017\000000000250.jpg: 480x640 (no detections), 76.0ms image 44/128 D:\Torch-Pruning-master\data\coco128\images\train2017\000000000257.jpg: 480x640 (no detections), 83.0ms image 45/128 D:\Torch-Pruning-master\data\coco128\images\train2017\000000000260.jpg: 448x640 (no detections), 73.5ms image 46/128 D:\Torch-Pruning-master\data\coco128\images\train2017\000000000263.jpg: 640x608 (no detections), 107.1ms image 47/128 D:\Torch-Pruning-master\data\coco128\images\train2017\000000000283.jpg: 640x448 (no detections), 72.2ms image 48/128 D:\Torch-Pruning-master\data\coco128\images\train2017\000000000294.jpg: 448x640 (no detections), 75.4ms image 49/128 D:\Torch-Pruning-master\data\coco128\images\train2017\000000000307.jpg: 480x640 (no detections), 79.3ms image 50/128 D:\Torch-Pruning-master\data\coco128\images\train2017\000000000308.jpg: 448x640 (no detections), 73.6ms image 51/128 D:\Torch-Pruning-master\data\coco128\images\train2017\000000000309.jpg: 640x640 (no detections), 103.1ms image 52/128 D:\Torch-Pruning-master\data\coco128\images\train2017\000000000312.jpg: 448x640 (no detections), 72.3ms image 53/128 D:\Torch-Pruning-master\data\coco128\images\train2017\000000000315.jpg: 448x640 (no detections), 75.7ms image 54/128 D:\Torch-Pruning-master\data\coco128\images\train2017\000000000321.jpg: 480x640 (no detections), 81.6ms image 55/128 D:\Torch-Pruning-master\data\coco128\images\train2017\000000000322.jpg: 512x640 (no detections), 89.6ms image 56/128 D:\Torch-Pruning-master\data\coco128\images\train2017\000000000326.jpg: 448x640 (no detections), 78.0ms image 57/128 D:\Torch-Pruning-master\data\coco128\images\train2017\000000000328.jpg: 512x640 (no detections), 91.2ms image 58/128 D:\Torch-Pruning-master\data\coco128\images\train2017\000000000332.jpg: 480x640 (no detections), 79.2ms image 59/128 D:\Torch-Pruning-master\data\coco128\images\train2017\000000000338.jpg: 352x640 (no detections), 78.3ms image 60/128 D:\Torch-Pruning-master\data\coco128\images\train2017\000000000349.jpg: 480x640 (no detections), 85.9ms image 61/128 D:\Torch-Pruning-master\data\coco128\images\train2017\000000000357.jpg: 224x640 (no detections), 56.4ms image 62/128 D:\Torch-Pruning-master\data\coco128\images\train2017\000000000359.jpg: 448x640 (no detections), 75.8ms image 63/128 D:\Torch-Pruning-master\data\coco128\images\train2017\000000000360.jpg: 480x640 (no detections), 78.8ms image 64/128 D:\Torch-Pruning-master\data\coco128\images\train2017\000000000368.jpg: 640x480 (no detections), 85.2ms image 65/128 D:\Torch-Pruning-master\data\coco128\images\train2017\000000000370.jpg: 640x480 (no detections), 83.5ms image 66/128 D:\Torch-Pruning-master\data\coco128\images\train2017\000000000382.jpg: 480x640 (no detections), 83.1ms image 67/128 D:\Torch-Pruning-master\data\coco128\images\train2017\000000000384.jpg: 640x448 (no detections), 78.5ms image 68/128 D:\Torch-Pruning-master\data\coco128\images\train2017\000000000387.jpg: 480x640 (no detections), 88.8ms image 69/128 D:\Torch-Pruning-master\data\coco128\images\train2017\000000000389.jpg: 480x640 (no detections), 82.5ms image 70/128 D:\Torch-Pruning-master\data\coco128\images\train2017\000000000394.jpg: 640x640 (no detections), 103.8ms image 71/128 D:\Torch-Pruning-master\data\coco128\images\train2017\000000000395.jpg: 608x640 (no detections), 115.1ms image 72/128 D:\Torch-Pruning-master\data\coco128\images\train2017\000000000397.jpg: 480x640 (no detections), 94.8ms image 73/128 D:\Torch-Pruning-master\data\coco128\images\train2017\000000000400.jpg: 640x640 (no detections), 117.0ms image 74/128 D:\Torch-Pruning-master\data\coco128\images\train2017\000000000404.jpg: 640x448 (no detections), 86.2ms image 75/128 D:\Torch-Pruning-master\data\coco128\images\train2017\000000000415.jpg: 640x384 (no detections), 94.9ms image 76/128 D:\Torch-Pruning-master\data\coco128\images\train2017\000000000419.jpg: 480x640 (no detections), 104.4ms image 77/128 D:\Torch-Pruning-master\data\coco128\images\train2017\000000000428.jpg: 384x640 (no detections), 91.5ms image 78/128 D:\Torch-Pruning-master\data\coco128\images\train2017\000000000431.jpg: 416x640 (no detections), 80.0ms image 79/128 D:\Torch-Pruning-master\data\coco128\images\train2017\000000000436.jpg: 640x448 (no detections), 81.0ms image 80/128 D:\Torch-Pruning-master\data\coco128\images\train2017\000000000438.jpg: 480x640 (no detections), 91.9ms image 81/128 D:\Torch-Pruning-master\data\coco128\images\train2017\000000000443.jpg: 480x640 (no detections), 85.9ms image 82/128 D:\Torch-Pruning-master\data\coco128\images\train2017\000000000446.jpg: 640x480 (no detections), 83.9ms image 83/128 D:\Torch-Pruning-master\data\coco128\images\train2017\000000000450.jpg: 480x640 (no detections), 86.5ms image 84/128 D:\Torch-Pruning-master\data\coco128\images\train2017\000000000459.jpg: 640x544 (no detections), 109.8ms image 85/128 D:\Torch-Pruning-master\data\coco128\images\train2017\000000000471.jpg: 448x640 (no detections), 87.9ms image 86/128 D:\Torch-Pruning-master\data\coco128\images\train2017\000000000472.jpg: 256x640 (no detections), 68.4ms image 87/128 D:\Torch-Pruning-master\data\coco128\images\train2017\000000000474.jpg: 640x448 (no detections), 83.2ms image 88/128 D:\Torch-Pruning-master\data\coco128\images\train2017\000000000486.jpg: 448x640 (no detections), 81.2ms image 89/128 D:\Torch-Pruning-master\data\coco128\images\train2017\000000000488.jpg: 416x640 (no detections), 73.7ms image 90/128 D:\Torch-Pruning-master\data\coco128\images\train2017\000000000490.jpg: 640x640 (no detections), 114.1ms image 91/128 D:\Torch-Pruning-master\data\coco128\images\train2017\000000000491.jpg: 416x640 (no detections), 75.7ms image 92/128 D:\Torch-Pruning-master\data\coco128\images\train2017\000000000502.jpg: 448x640 (no detections), 81.0ms image 93/128 D:\Torch-Pruning-master\data\coco128\images\train2017\000000000508.jpg: 480x640 (no detections), 88.9ms image 94/128 D:\Torch-Pruning-master\data\coco128\images\train2017\000000000510.jpg: 480x640 (no detections), 118.2ms image 95/128 D:\Torch-Pruning-master\data\coco128\images\train2017\000000000514.jpg: 640x384 (no detections), 72.0ms image 96/128 D:\Torch-Pruning-master\data\coco128\images\train2017\000000000520.jpg: 480x640 (no detections), 83.2ms image 97/128 D:\Torch-Pruning-master\data\coco128\images\train2017\000000000529.jpg: 640x448 (no detections), 75.7ms image 98/128 D:\Torch-Pruning-master\data\coco128\images\train2017\000000000531.jpg: 480x640 (no detections), 84.8ms image 99/128 D:\Torch-Pruning-master\data\coco128\images\train2017\000000000532.jpg: 480x640 (no detections), 84.2ms image 100/128 D:\Torch-Pruning-master\data\coco128\images\train2017\000000000536.jpg: 480x640 (no detections), 89.3ms image 101/128 D:\Torch-Pruning-master\data\coco128\images\train2017\000000000540.jpg: 448x640 (no detections), 78.6ms image 102/128 D:\Torch-Pruning-master\data\coco128\images\train2017\000000000542.jpg: 512x640 (no detections), 90.9ms image 103/128 D:\Torch-Pruning-master\data\coco128\images\train2017\000000000544.jpg: 448x640 (no detections), 83.3ms image 104/128 D:\Torch-Pruning-master\data\coco128\images\train2017\000000000560.jpg: 448x640 (no detections), 78.5ms image 105/128 D:\Torch-Pruning-master\data\coco128\images\train2017\000000000562.jpg: 640x448 (no detections), 76.4ms image 106/128 D:\Torch-Pruning-master\data\coco128\images\train2017\000000000564.jpg: 640x544 (no detections), 106.5ms image 107/128 D:\Torch-Pruning-master\data\coco128\images\train2017\000000000569.jpg: 480x640 (no detections), 92.3ms image 108/128 D:\Torch-Pruning-master\data\coco128\images\train2017\000000000572.jpg: 640x448 (no detections), 76.2ms image 109/128 D:\Torch-Pruning-master\data\coco128\images\train2017\000000000575.jpg: 544x640 (no detections), 105.0ms image 110/128 D:\Torch-Pruning-master\data\coco128\images\train2017\000000000581.jpg: 640x608 (no detections), 116.4ms image 111/128 D:\Torch-Pruning-master\data\coco128\images\train2017\000000000584.jpg: 448x640 (no detections), 79.8ms image 112/128 D:\Torch-Pruning-master\data\coco128\images\train2017\000000000589.jpg: 480x640 (no detections), 90.9ms image 113/128 D:\Torch-Pruning-master\data\coco128\images\train2017\000000000590.jpg: 640x544 (no detections), 100.4ms image 114/128 D:\Torch-Pruning-master\data\coco128\images\train2017\000000000595.jpg: 480x640 (no detections), 82.8ms image 115/128 D:\Torch-Pruning-master\data\coco128\images\train2017\000000000597.jpg: 256x640 (no detections), 51.9ms image 116/128 D:\Torch-Pruning-master\data\coco128\images\train2017\000000000599.jpg: 416x640 (no detections), 70.6ms image 117/128 D:\Torch-Pruning-master\data\coco128\images\train2017\000000000605.jpg: 480x640 (no detections), 88.3ms image 118/128 D:\Torch-Pruning-master\data\coco128\images\train2017\000000000612.jpg: 480x640 (no detections), 87.9ms image 119/128 D:\Torch-Pruning-master\data\coco128\images\train2017\000000000620.jpg: 640x480 (no detections), 80.8ms image 120/128 D:\Torch-Pruning-master\data\coco128\images\train2017\000000000623.jpg: 640x480 (no detections), 79.6ms image 121/128 D:\Torch-Pruning-master\data\coco128\images\train2017\000000000625.jpg: 448x640 (no detections), 69.1ms image 122/128 D:\Torch-Pruning-master\data\coco128\images\train2017\000000000626.jpg: 480x640 (no detections), 92.7ms image 123/128 D:\Torch-Pruning-master\data\coco128\images\train2017\000000000629.jpg: 448x640 (no detections), 86.0ms image 124/128 D:\Torch-Pruning-master\data\coco128\images\train2017\000000000634.jpg: 640x448 (no detections), 71.2ms image 125/128 D:\Torch-Pruning-master\data\coco128\images\train2017\000000000636.jpg: 640x480 (no detections), 111.7ms image 126/128 D:\Torch-Pruning-master\data\coco128\images\train2017\000000000641.jpg: 448x640 (no detections), 253.3ms image 127/128 D:\Torch-Pruning-master\data\coco128\images\train2017\000000000643.jpg: 480x640 (no detections), 92.6ms image 128/128 D:\Torch-Pruning-master\data\coco128\images\train2017\000000000650.jpg: 448x640 (no detections), 76.3ms Speed: 0.6ms pre-process, 86.0ms inference, 7.5ms NMS per image at shape (1, 3, 640, 640) Results saved to runs\detect\exp3

LorenzoSun-V commented 1 year ago

The same issue here.

LorenzoSun-V commented 1 year ago

I comment out the code of the picture below, and the issue can be solved. But the params seem to be the same as before pruning. image

AFallDay commented 1 year ago

image @LorenzoSun-V Thanks, this does detect it, but the same parameters equate to no pruning。

AFallDay commented 1 year ago

I comment out the code of the picture below, and the issue can be solved. But the params seem to be the same as before pruning. image

It seems to be in need of fine tuning, do you have the code for fine tuning please?

LorenzoSun-V commented 1 year ago

I referred to yolov7's code and tested it on yolov5-v7.0 successfully. Hope this is helpful.

import argparse
import math
import os
import random
import subprocess
import sys
import time
from copy import deepcopy
from datetime import datetime
from pathlib import Path

try:
    import comet_ml  # must be imported before torch (if installed)
except ImportError:
    comet_ml = None

import numpy as np
import torch
import torch.distributed as dist
import torch.nn as nn
import yaml
from torch.optim import lr_scheduler
from tqdm import tqdm

FILE = Path(__file__).resolve()
ROOT = FILE.parents[0]  # YOLOv5 root directory
if str(ROOT) not in sys.path:
    sys.path.append(str(ROOT))  # add ROOT to PATH
ROOT = Path(os.path.relpath(ROOT, Path.cwd()))  # relative

import val as validate  # for end-of-epoch mAP
from models.experimental import attempt_load
from models.yolo import Model
from utils.autoanchor import check_anchors
from utils.autobatch import check_train_batch_size
from utils.callbacks import Callbacks
from utils.dataloaders import create_dataloader
from utils.downloads import attempt_download, is_url
from utils.general import (LOGGER, TQDM_BAR_FORMAT, check_amp, check_dataset, check_file, check_git_info,
                           check_git_status, check_img_size, check_requirements, check_suffix, check_yaml, colorstr,
                           get_latest_run, increment_path, init_seeds, intersect_dicts, labels_to_class_weights,
                           labels_to_image_weights, methods, one_cycle, print_args, print_mutation, strip_optimizer,
                           yaml_save)
from utils.loggers import Loggers
from utils.loggers.comet.comet_utils import check_comet_resume
from utils.loss import ComputeLoss
from utils.metrics import fitness
from utils.plots import plot_evolve
from utils.torch_utils import (EarlyStopping, ModelEMA, de_parallel, select_device, smart_DDP, smart_optimizer,
                               smart_resume, torch_distributed_zero_first)

LOCAL_RANK = int(os.getenv('LOCAL_RANK', -1))  # https://pytorch.org/docs/stable/elastic/run.html
RANK = int(os.getenv('RANK', -1))
WORLD_SIZE = int(os.getenv('WORLD_SIZE', 1))
GIT_INFO = check_git_info()

def train(hyp, opt, device, callbacks):  # hyp is path/to/hyp.yaml or hyp dictionary
    save_dir, epochs, batch_size, weights, single_cls, evolve, data, cfg, resume, noval, nosave, workers, freeze = \
        Path(opt.save_dir), opt.epochs, opt.batch_size, opt.weights, opt.single_cls, opt.evolve, opt.data, opt.cfg, \
        opt.resume, opt.noval, opt.nosave, opt.workers, opt.freeze
    callbacks.run('on_pretrain_routine_start')

    # Directories
    w = save_dir / 'weights'  # weights dir
    (w.parent if evolve else w).mkdir(parents=True, exist_ok=True)  # make dir
    last, best = w / 'last.pt', w / 'best.pt'

    # Hyperparameters
    if isinstance(hyp, str):
        with open(hyp, errors='ignore') as f:
            hyp = yaml.safe_load(f)  # load hyps dict
    LOGGER.info(colorstr('hyperparameters: ') + ', '.join(f'{k}={v}' for k, v in hyp.items()))
    opt.hyp = hyp.copy()  # for saving hyps to checkpoints

    # Save run settings
    if not evolve:
        yaml_save(save_dir / 'hyp.yaml', hyp)
        yaml_save(save_dir / 'opt.yaml', vars(opt))

    # Loggers
    data_dict = None
    if RANK in {-1, 0}:
        loggers = Loggers(save_dir, weights, opt, hyp, LOGGER)  # loggers instance

        # Register actions
        for k in methods(loggers):
            callbacks.register_action(k, callback=getattr(loggers, k))

        # Process custom dataset artifact link
        data_dict = loggers.remote_dataset
        if resume:  # If resuming runs from remote artifact
            weights, epochs, hyp, batch_size = opt.weights, opt.epochs, opt.hyp, opt.batch_size

    # Config
    plots = not evolve and not opt.noplots  # create plots
    cuda = device.type != 'cpu'
    init_seeds(opt.seed + 1 + RANK, deterministic=True)
    with torch_distributed_zero_first(LOCAL_RANK):
        data_dict = data_dict or check_dataset(data)  # check if None
    train_path, val_path = data_dict['train'], data_dict['val']
    nc = 1 if single_cls else int(data_dict['nc'])  # number of classes
    names = {0: 'item'} if single_cls and len(data_dict['names']) != 1 else data_dict['names']  # class names
    is_coco = isinstance(val_path, str) and val_path.endswith('coco/val2017.txt')  # COCO dataset

    # Model
    check_suffix(weights, '.pt')  # check weights
    pretrained = weights.endswith('.pt')
    if pretrained:
        with torch_distributed_zero_first(LOCAL_RANK):
            weights = attempt_download(weights)  # download if not found locally
        ckpt = torch.load(weights, map_location='cpu')  # load checkpoint to CPU to avoid CUDA memory leak
        model = Model(cfg or ckpt['model'].yaml, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device)  # create
        exclude = ['anchor'] if (cfg or hyp.get('anchors')) and not resume else []  # exclude keys
        csd = ckpt['model'].float().state_dict()  # checkpoint state_dict as FP32
        csd = intersect_dicts(csd, model.state_dict(), exclude=exclude)  # intersect
        model.load_state_dict(csd, strict=False)  # load
        LOGGER.info(f'Transferred {len(csd)}/{len(model.state_dict())} items from {weights}')  # report
    else:
        model = Model(cfg, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device)  # create
    amp = check_amp(model)  # check AMP

    ################################################################################
    # Pruning
    import torch_pruning as tp
    model.eval()
    print(model)
    example_inputs = torch.randn(1, 3, opt.imgsz, opt.imgsz).to(device)
    imp = tp.importance.MagnitudeImportance(p=2) # L2 norm pruning

    ignored_layers = []
    from models.yolo import Detect
    for m in model.modules():
        if isinstance(m, (Detect)):
            ignored_layers.append(m.m)
    iterative_steps = 1 # progressive pruning
    pruner = tp.pruner.MagnitudePruner(
        model,
        example_inputs,
        importance=imp,
        iterative_steps=iterative_steps,
        pruning_ratio=opt.target_prune_rate, # remove 50% channels, ResNet18 = {64, 128, 256, 512} => ResNet18_Half = {32, 64, 128, 256}
        ignored_layers=ignored_layers,
    )
    base_macs, base_nparams = tp.utils.count_ops_and_params(model, example_inputs)
    pruner.step()

    pruned_macs, pruned_nparams = tp.utils.count_ops_and_params(model, example_inputs)
    print(model)
    print("Before Pruning: MACs=%f G, #Params=%f G"%(base_macs/1e9, base_nparams/1e9))
    print("After Pruning: MACs=%f G, #Params=%f G"%(pruned_macs/1e9, pruned_nparams/1e9))
    ####################################################################################

    # Freeze
    freeze = [f'model.{x}.' for x in (freeze if len(freeze) > 1 else range(freeze[0]))]  # layers to freeze
    for k, v in model.named_parameters():
        v.requires_grad = True  # train all layers
        # v.register_hook(lambda x: torch.nan_to_num(x))  # NaN to 0 (commented for erratic training results)
        if any(x in k for x in freeze):
            LOGGER.info(f'freezing {k}')
            v.requires_grad = False

    # Image size
    gs = max(int(model.stride.max()), 32)  # grid size (max stride)
    imgsz = check_img_size(opt.imgsz, gs, floor=gs * 2)  # verify imgsz is gs-multiple

    # Batch size
    if RANK == -1 and batch_size == -1:  # single-GPU only, estimate best batch size
        batch_size = check_train_batch_size(model, imgsz, amp)
        loggers.on_params_update({'batch_size': batch_size})

    # Optimizer
    nbs = 64  # nominal batch size
    accumulate = max(round(nbs / batch_size), 1)  # accumulate loss before optimizing
    hyp['weight_decay'] *= batch_size * accumulate / nbs  # scale weight_decay
    optimizer = smart_optimizer(model, opt.optimizer, hyp['lr0'], hyp['momentum'], hyp['weight_decay'])

    # Scheduler
    if opt.cos_lr:
        lf = one_cycle(1, hyp['lrf'], epochs)  # cosine 1->hyp['lrf']
    else:
        lf = lambda x: (1 - x / epochs) * (1.0 - hyp['lrf']) + hyp['lrf']  # linear
    scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)  # plot_lr_scheduler(optimizer, scheduler, epochs)

    # EMA
    ema = ModelEMA(model) if RANK in {-1, 0} else None

    # Resume
    best_fitness, start_epoch = 0.0, 0
    if pretrained:
        if resume:
            best_fitness, start_epoch, epochs = smart_resume(ckpt, optimizer, ema, weights, epochs, resume)
        del ckpt, csd

    # DP mode
    if cuda and RANK == -1 and torch.cuda.device_count() > 1:
        LOGGER.warning(
            'WARNING ⚠️ DP not recommended, use torch.distributed.run for best DDP Multi-GPU results.\n'
            'See Multi-GPU Tutorial at https://docs.ultralytics.com/yolov5/tutorials/multi_gpu_training to get started.'
        )
        model = torch.nn.DataParallel(model)

    # SyncBatchNorm
    if opt.sync_bn and cuda and RANK != -1:
        model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
        LOGGER.info('Using SyncBatchNorm()')

    # Trainloader
    train_loader, dataset = create_dataloader(train_path,
                                              imgsz,
                                              batch_size // WORLD_SIZE,
                                              gs,
                                              single_cls,
                                              hyp=hyp,
                                              augment=True,
                                              cache=None if opt.cache == 'val' else opt.cache,
                                              rect=opt.rect,
                                              rank=LOCAL_RANK,
                                              workers=workers,
                                              image_weights=opt.image_weights,
                                              quad=opt.quad,
                                              prefix=colorstr('train: '),
                                              shuffle=True,
                                              seed=opt.seed)
    labels = np.concatenate(dataset.labels, 0)
    mlc = int(labels[:, 0].max())  # max label class
    assert mlc < nc, f'Label class {mlc} exceeds nc={nc} in {data}. Possible class labels are 0-{nc - 1}'

    # Process 0
    if RANK in {-1, 0}:
        val_loader = create_dataloader(val_path,
                                       imgsz,
                                       batch_size // WORLD_SIZE * 2,
                                       gs,
                                       single_cls,
                                       hyp=hyp,
                                       cache=None if noval else opt.cache,
                                       rect=True,
                                       rank=-1,
                                       workers=workers * 2,
                                       pad=0.5,
                                       prefix=colorstr('val: '))[0]

        if not resume:
            if not opt.noautoanchor:
                check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz)  # run AutoAnchor
            model.half().float()  # pre-reduce anchor precision

        callbacks.run('on_pretrain_routine_end', labels, names)

    # DDP mode
    if cuda and RANK != -1:
        model = smart_DDP(model)

    # Model attributes
    nl = de_parallel(model).model[-1].nl  # number of detection layers (to scale hyps)
    hyp['box'] *= 3 / nl  # scale to layers
    hyp['cls'] *= nc / 80 * 3 / nl  # scale to classes and layers
    hyp['obj'] *= (imgsz / 640) ** 2 * 3 / nl  # scale to image size and layers
    hyp['label_smoothing'] = opt.label_smoothing
    model.nc = nc  # attach number of classes to model
    model.hyp = hyp  # attach hyperparameters to model
    model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc  # attach class weights
    model.names = names

    # Start training
    t0 = time.time()
    nb = len(train_loader)  # number of batches
    nw = max(round(hyp['warmup_epochs'] * nb), 100)  # number of warmup iterations, max(3 epochs, 100 iterations)
    # nw = min(nw, (epochs - start_epoch) / 2 * nb)  # limit warmup to < 1/2 of training
    last_opt_step = -1
    maps = np.zeros(nc)  # mAP per class
    results = (0, 0, 0, 0, 0, 0, 0)  # P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls)
    scheduler.last_epoch = start_epoch - 1  # do not move
    scaler = torch.cuda.amp.GradScaler(enabled=amp)
    stopper, stop = EarlyStopping(patience=opt.patience), False
    compute_loss = ComputeLoss(model)  # init loss class
    callbacks.run('on_train_start')
    LOGGER.info(f'Image sizes {imgsz} train, {imgsz} val\n'
                f'Using {train_loader.num_workers * WORLD_SIZE} dataloader workers\n'
                f"Logging results to {colorstr('bold', save_dir)}\n"
                f'Starting training for {epochs} epochs...')
    for epoch in range(start_epoch, epochs):  # epoch ------------------------------------------------------------------
        callbacks.run('on_train_epoch_start')
        model.train()

        # Update image weights (optional, single-GPU only)
        if opt.image_weights:
            cw = model.class_weights.cpu().numpy() * (1 - maps) ** 2 / nc  # class weights
            iw = labels_to_image_weights(dataset.labels, nc=nc, class_weights=cw)  # image weights
            dataset.indices = random.choices(range(dataset.n), weights=iw, k=dataset.n)  # rand weighted idx

        # Update mosaic border (optional)
        # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
        # dataset.mosaic_border = [b - imgsz, -b]  # height, width borders

        mloss = torch.zeros(3, device=device)  # mean losses
        if RANK != -1:
            train_loader.sampler.set_epoch(epoch)
        pbar = enumerate(train_loader)
        LOGGER.info(('\n' + '%11s' * 7) % ('Epoch', 'GPU_mem', 'box_loss', 'obj_loss', 'cls_loss', 'Instances', 'Size'))
        if RANK in {-1, 0}:
            pbar = tqdm(pbar, total=nb, bar_format=TQDM_BAR_FORMAT)  # progress bar
        optimizer.zero_grad()
        for i, (imgs, targets, paths, _) in pbar:  # batch -------------------------------------------------------------
            callbacks.run('on_train_batch_start')
            ni = i + nb * epoch  # number integrated batches (since train start)
            imgs = imgs.to(device, non_blocking=True).float() / 255  # uint8 to float32, 0-255 to 0.0-1.0

            # Warmup
            if ni <= nw:
                xi = [0, nw]  # x interp
                # compute_loss.gr = np.interp(ni, xi, [0.0, 1.0])  # iou loss ratio (obj_loss = 1.0 or iou)
                accumulate = max(1, np.interp(ni, xi, [1, nbs / batch_size]).round())
                for j, x in enumerate(optimizer.param_groups):
                    # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
                    x['lr'] = np.interp(ni, xi, [hyp['warmup_bias_lr'] if j == 0 else 0.0, x['initial_lr'] * lf(epoch)])
                    if 'momentum' in x:
                        x['momentum'] = np.interp(ni, xi, [hyp['warmup_momentum'], hyp['momentum']])

            # Multi-scale
            if opt.multi_scale:
                sz = random.randrange(int(imgsz * 0.5), int(imgsz * 1.5) + gs) // gs * gs  # size
                sf = sz / max(imgs.shape[2:])  # scale factor
                if sf != 1:
                    ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]]  # new shape (stretched to gs-multiple)
                    imgs = nn.functional.interpolate(imgs, size=ns, mode='bilinear', align_corners=False)

            # Forward
            with torch.cuda.amp.autocast(amp):
                pred = model(imgs)  # forward
                loss, loss_items = compute_loss(pred, targets.to(device))  # loss scaled by batch_size
                if RANK != -1:
                    loss *= WORLD_SIZE  # gradient averaged between devices in DDP mode
                if opt.quad:
                    loss *= 4.

            # Backward
            scaler.scale(loss).backward()

            # Optimize - https://pytorch.org/docs/master/notes/amp_examples.html
            if ni - last_opt_step >= accumulate:
                scaler.unscale_(optimizer)  # unscale gradients
                torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=10.0)  # clip gradients
                scaler.step(optimizer)  # optimizer.step
                scaler.update()
                optimizer.zero_grad()
                if ema:
                    ema.update(model)
                last_opt_step = ni

            # Log
            if RANK in {-1, 0}:
                mloss = (mloss * i + loss_items) / (i + 1)  # update mean losses
                mem = f'{torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0:.3g}G'  # (GB)
                pbar.set_description(('%11s' * 2 + '%11.4g' * 5) %
                                     (f'{epoch}/{epochs - 1}', mem, *mloss, targets.shape[0], imgs.shape[-1]))
                callbacks.run('on_train_batch_end', model, ni, imgs, targets, paths, list(mloss))
                if callbacks.stop_training:
                    return
            # end batch ------------------------------------------------------------------------------------------------

        # Scheduler
        lr = [x['lr'] for x in optimizer.param_groups]  # for loggers
        scheduler.step()

        if RANK in {-1, 0}:
            # mAP
            callbacks.run('on_train_epoch_end', epoch=epoch)
            ema.update_attr(model, include=['yaml', 'nc', 'hyp', 'names', 'stride', 'class_weights'])
            final_epoch = (epoch + 1 == epochs) or stopper.possible_stop
            if not noval or final_epoch:  # Calculate mAP
                results, maps, _ = validate.run(data_dict,
                                                batch_size=batch_size // WORLD_SIZE * 2,
                                                imgsz=imgsz,
                                                half=amp,
                                                model=ema.ema,
                                                single_cls=single_cls,
                                                dataloader=val_loader,
                                                save_dir=save_dir,
                                                plots=False,
                                                callbacks=callbacks,
                                                compute_loss=compute_loss)

            # Update best mAP
            fi = fitness(np.array(results).reshape(1, -1))  # weighted combination of [P, R, mAP@.5, mAP@.5-.95]
            stop = stopper(epoch=epoch, fitness=fi)  # early stop check
            if fi > best_fitness:
                best_fitness = fi
            log_vals = list(mloss) + list(results) + lr
            callbacks.run('on_fit_epoch_end', log_vals, epoch, best_fitness, fi)

            # Save model
            if (not nosave) or (final_epoch and not evolve):  # if save
                ckpt = {
                    'epoch': epoch,
                    'best_fitness': best_fitness,
                    'model': deepcopy(de_parallel(model)).half(),
                    'ema': deepcopy(ema.ema).half(),
                    'updates': ema.updates,
                    'optimizer': optimizer.state_dict(),
                    'opt': vars(opt),
                    'git': GIT_INFO,  # {remote, branch, commit} if a git repo
                    'date': datetime.now().isoformat()}

                # Save last, best and delete
                torch.save(ckpt, last)
                if best_fitness == fi:
                    torch.save(ckpt, best)
                if opt.save_period > 0 and epoch % opt.save_period == 0:
                    torch.save(ckpt, w / f'epoch{epoch}.pt')
                del ckpt
                callbacks.run('on_model_save', last, epoch, final_epoch, best_fitness, fi)

        # EarlyStopping
        if RANK != -1:  # if DDP training
            broadcast_list = [stop if RANK == 0 else None]
            dist.broadcast_object_list(broadcast_list, 0)  # broadcast 'stop' to all ranks
            if RANK != 0:
                stop = broadcast_list[0]
        if stop:
            break  # must break all DDP ranks

        # end epoch ----------------------------------------------------------------------------------------------------
    # end training -----------------------------------------------------------------------------------------------------
    if RANK in {-1, 0}:
        LOGGER.info(f'\n{epoch - start_epoch + 1} epochs completed in {(time.time() - t0) / 3600:.3f} hours.')
        for f in last, best:
            if f.exists():
                strip_optimizer(f)  # strip optimizers
                if f is best:
                    LOGGER.info(f'\nValidating {f}...')
                    results, _, _ = validate.run(
                        data_dict,
                        batch_size=batch_size // WORLD_SIZE * 2,
                        imgsz=imgsz,
                        model=attempt_load(f, device).half(),
                        iou_thres=0.65 if is_coco else 0.60,  # best pycocotools at iou 0.65
                        single_cls=single_cls,
                        dataloader=val_loader,
                        save_dir=save_dir,
                        save_json=is_coco,
                        verbose=True,
                        plots=plots,
                        callbacks=callbacks,
                        compute_loss=compute_loss)  # val best model with plots
                    if is_coco:
                        callbacks.run('on_fit_epoch_end', list(mloss) + list(results) + lr, epoch, best_fitness, fi)

        callbacks.run('on_train_end', last, best, epoch, results)

    torch.cuda.empty_cache()
    return results

def parse_opt(known=False):
    parser = argparse.ArgumentParser()
    parser.add_argument('--weights', type=str, default=ROOT / 'yolov5s.pt', help='initial weights path')
    parser.add_argument('--cfg', type=str, default='', help='model.yaml path')
    parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path')
    parser.add_argument('--hyp', type=str, default=ROOT / 'data/hyps/hyp.scratch-low.yaml', help='hyperparameters path')
    parser.add_argument('--epochs', type=int, default=100, help='total training epochs')
    parser.add_argument('--batch-size', type=int, default=16, help='total batch size for all GPUs, -1 for autobatch')
    parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='train, val image size (pixels)')
    parser.add_argument('--rect', action='store_true', help='rectangular training')
    parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training')
    parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
    parser.add_argument('--noval', action='store_true', help='only validate final epoch')
    parser.add_argument('--noautoanchor', action='store_true', help='disable AutoAnchor')
    parser.add_argument('--noplots', action='store_true', help='save no plot files')
    parser.add_argument('--evolve', type=int, nargs='?', const=300, help='evolve hyperparameters for x generations')
    parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
    parser.add_argument('--cache', type=str, nargs='?', const='ram', help='image --cache ram/disk')
    parser.add_argument('--image-weights', action='store_true', help='use weighted image selection for training')
    parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
    parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%')
    parser.add_argument('--single-cls', action='store_true', help='train multi-class data as single-class')
    parser.add_argument('--optimizer', type=str, choices=['SGD', 'Adam', 'AdamW'], default='SGD', help='optimizer')
    parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode')
    parser.add_argument('--workers', type=int, default=8, help='max dataloader workers (per RANK in DDP mode)')
    parser.add_argument('--project', default=ROOT / 'runs/train', help='save to project/name')
    parser.add_argument('--name', default='exp', help='save to project/name')
    parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
    parser.add_argument('--quad', action='store_true', help='quad dataloader')
    parser.add_argument('--cos-lr', action='store_true', help='cosine LR scheduler')
    parser.add_argument('--label-smoothing', type=float, default=0.0, help='Label smoothing epsilon')
    parser.add_argument('--patience', type=int, default=100, help='EarlyStopping patience (epochs without improvement)')
    parser.add_argument('--freeze', nargs='+', type=int, default=[0], help='Freeze layers: backbone=10, first3=0 1 2')
    parser.add_argument('--save-period', type=int, default=-1, help='Save checkpoint every x epochs (disabled if < 1)')
    parser.add_argument('--seed', type=int, default=0, help='Global training seed')
    parser.add_argument('--local_rank', type=int, default=-1, help='Automatic DDP Multi-GPU argument, do not modify')
    parser.add_argument('--target-prune-rate', default=0.5, type=float, help='Target pruning rate')
    # Logger arguments
    parser.add_argument('--entity', default=None, help='Entity')
    parser.add_argument('--upload_dataset', nargs='?', const=True, default=False, help='Upload data, "val" option')
    parser.add_argument('--bbox_interval', type=int, default=-1, help='Set bounding-box image logging interval')
    parser.add_argument('--artifact_alias', type=str, default='latest', help='Version of dataset artifact to use')

    return parser.parse_known_args()[0] if known else parser.parse_args()

def main(opt, callbacks=Callbacks()):
    # Checks
    if RANK in {-1, 0}:
        print_args(vars(opt))
        check_git_status()
        check_requirements(ROOT / 'requirements.txt')

    # Resume (from specified or most recent last.pt)
    if opt.resume and not check_comet_resume(opt) and not opt.evolve:
        last = Path(check_file(opt.resume) if isinstance(opt.resume, str) else get_latest_run())
        opt_yaml = last.parent.parent / 'opt.yaml'  # train options yaml
        opt_data = opt.data  # original dataset
        if opt_yaml.is_file():
            with open(opt_yaml, errors='ignore') as f:
                d = yaml.safe_load(f)
        else:
            d = torch.load(last, map_location='cpu')['opt']
        opt = argparse.Namespace(**d)  # replace
        opt.cfg, opt.weights, opt.resume = '', str(last), True  # reinstate
        if is_url(opt_data):
            opt.data = check_file(opt_data)  # avoid HUB resume auth timeout
    else:
        opt.data, opt.cfg, opt.hyp, opt.weights, opt.project = \
            check_file(opt.data), check_yaml(opt.cfg), check_yaml(opt.hyp), str(opt.weights), str(opt.project)  # checks
        assert len(opt.cfg) or len(opt.weights), 'either --cfg or --weights must be specified'
        if opt.evolve:
            if opt.project == str(ROOT / 'runs/train'):  # if default project name, rename to runs/evolve
                opt.project = str(ROOT / 'runs/evolve')
            opt.exist_ok, opt.resume = opt.resume, False  # pass resume to exist_ok and disable resume
        if opt.name == 'cfg':
            opt.name = Path(opt.cfg).stem  # use model.yaml as name
        opt.save_dir = str(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok))

    # DDP mode
    device = select_device(opt.device, batch_size=opt.batch_size)
    if LOCAL_RANK != -1:
        msg = 'is not compatible with YOLOv5 Multi-GPU DDP training'
        assert not opt.image_weights, f'--image-weights {msg}'
        assert not opt.evolve, f'--evolve {msg}'
        assert opt.batch_size != -1, f'AutoBatch with --batch-size -1 {msg}, please pass a valid --batch-size'
        assert opt.batch_size % WORLD_SIZE == 0, f'--batch-size {opt.batch_size} must be multiple of WORLD_SIZE'
        assert torch.cuda.device_count() > LOCAL_RANK, 'insufficient CUDA devices for DDP command'
        torch.cuda.set_device(LOCAL_RANK)
        device = torch.device('cuda', LOCAL_RANK)
        dist.init_process_group(backend='nccl' if dist.is_nccl_available() else 'gloo')

    # Train
    if not opt.evolve:
        train(opt.hyp, opt, device, callbacks)

    # Evolve hyperparameters (optional)
    else:
        # Hyperparameter evolution metadata (mutation scale 0-1, lower_limit, upper_limit)
        meta = {
            'lr0': (1, 1e-5, 1e-1),  # initial learning rate (SGD=1E-2, Adam=1E-3)
            'lrf': (1, 0.01, 1.0),  # final OneCycleLR learning rate (lr0 * lrf)
            'momentum': (0.3, 0.6, 0.98),  # SGD momentum/Adam beta1
            'weight_decay': (1, 0.0, 0.001),  # optimizer weight decay
            'warmup_epochs': (1, 0.0, 5.0),  # warmup epochs (fractions ok)
            'warmup_momentum': (1, 0.0, 0.95),  # warmup initial momentum
            'warmup_bias_lr': (1, 0.0, 0.2),  # warmup initial bias lr
            'box': (1, 0.02, 0.2),  # box loss gain
            'cls': (1, 0.2, 4.0),  # cls loss gain
            'cls_pw': (1, 0.5, 2.0),  # cls BCELoss positive_weight
            'obj': (1, 0.2, 4.0),  # obj loss gain (scale with pixels)
            'obj_pw': (1, 0.5, 2.0),  # obj BCELoss positive_weight
            'iou_t': (0, 0.1, 0.7),  # IoU training threshold
            'anchor_t': (1, 2.0, 8.0),  # anchor-multiple threshold
            'anchors': (2, 2.0, 10.0),  # anchors per output grid (0 to ignore)
            'fl_gamma': (0, 0.0, 2.0),  # focal loss gamma (efficientDet default gamma=1.5)
            'hsv_h': (1, 0.0, 0.1),  # image HSV-Hue augmentation (fraction)
            'hsv_s': (1, 0.0, 0.9),  # image HSV-Saturation augmentation (fraction)
            'hsv_v': (1, 0.0, 0.9),  # image HSV-Value augmentation (fraction)
            'degrees': (1, 0.0, 45.0),  # image rotation (+/- deg)
            'translate': (1, 0.0, 0.9),  # image translation (+/- fraction)
            'scale': (1, 0.0, 0.9),  # image scale (+/- gain)
            'shear': (1, 0.0, 10.0),  # image shear (+/- deg)
            'perspective': (0, 0.0, 0.001),  # image perspective (+/- fraction), range 0-0.001
            'flipud': (1, 0.0, 1.0),  # image flip up-down (probability)
            'fliplr': (0, 0.0, 1.0),  # image flip left-right (probability)
            'mosaic': (1, 0.0, 1.0),  # image mixup (probability)
            'mixup': (1, 0.0, 1.0),  # image mixup (probability)
            'copy_paste': (1, 0.0, 1.0)}  # segment copy-paste (probability)

        with open(opt.hyp, errors='ignore') as f:
            hyp = yaml.safe_load(f)  # load hyps dict
            if 'anchors' not in hyp:  # anchors commented in hyp.yaml
                hyp['anchors'] = 3
        if opt.noautoanchor:
            del hyp['anchors'], meta['anchors']
        opt.noval, opt.nosave, save_dir = True, True, Path(opt.save_dir)  # only val/save final epoch
        # ei = [isinstance(x, (int, float)) for x in hyp.values()]  # evolvable indices
        evolve_yaml, evolve_csv = save_dir / 'hyp_evolve.yaml', save_dir / 'evolve.csv'
        if opt.bucket:
            # download evolve.csv if exists
            subprocess.run([
                'gsutil',
                'cp',
                f'gs://{opt.bucket}/evolve.csv',
                str(evolve_csv), ])

        for _ in range(opt.evolve):  # generations to evolve
            if evolve_csv.exists():  # if evolve.csv exists: select best hyps and mutate
                # Select parent(s)
                parent = 'single'  # parent selection method: 'single' or 'weighted'
                x = np.loadtxt(evolve_csv, ndmin=2, delimiter=',', skiprows=1)
                n = min(5, len(x))  # number of previous results to consider
                x = x[np.argsort(-fitness(x))][:n]  # top n mutations
                w = fitness(x) - fitness(x).min() + 1E-6  # weights (sum > 0)
                if parent == 'single' or len(x) == 1:
                    # x = x[random.randint(0, n - 1)]  # random selection
                    x = x[random.choices(range(n), weights=w)[0]]  # weighted selection
                elif parent == 'weighted':
                    x = (x * w.reshape(n, 1)).sum(0) / w.sum()  # weighted combination

                # Mutate
                mp, s = 0.8, 0.2  # mutation probability, sigma
                npr = np.random
                npr.seed(int(time.time()))
                g = np.array([meta[k][0] for k in hyp.keys()])  # gains 0-1
                ng = len(meta)
                v = np.ones(ng)
                while all(v == 1):  # mutate until a change occurs (prevent duplicates)
                    v = (g * (npr.random(ng) < mp) * npr.randn(ng) * npr.random() * s + 1).clip(0.3, 3.0)
                for i, k in enumerate(hyp.keys()):  # plt.hist(v.ravel(), 300)
                    hyp[k] = float(x[i + 7] * v[i])  # mutate

            # Constrain to limits
            for k, v in meta.items():
                hyp[k] = max(hyp[k], v[1])  # lower limit
                hyp[k] = min(hyp[k], v[2])  # upper limit
                hyp[k] = round(hyp[k], 5)  # significant digits

            # Train mutation
            results = train(hyp.copy(), opt, device, callbacks)
            callbacks = Callbacks()
            # Write mutation results
            keys = ('metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/mAP_0.5:0.95', 'val/box_loss',
                    'val/obj_loss', 'val/cls_loss')
            print_mutation(keys, results, hyp.copy(), save_dir, opt.bucket)

        # Plot results
        plot_evolve(evolve_csv)
        LOGGER.info(f'Hyperparameter evolution finished {opt.evolve} generations\n'
                    f"Results saved to {colorstr('bold', save_dir)}\n"
                    f'Usage example: $ python train.py --hyp {evolve_yaml}')

def run(**kwargs):
    # Usage: import train; train.run(data='coco128.yaml', imgsz=320, weights='yolov5m.pt')
    opt = parse_opt(True)
    for k, v in kwargs.items():
        setattr(opt, k, v)
    main(opt)
    return opt

if __name__ == '__main__':
    opt = parse_opt()
    main(opt)
AFallDay commented 1 year ago

I referred to yolov7's code and tested it on yolov5-v7.0 successfully. Hope this is helpful.

import argparse
import math
import os
import random
import subprocess
import sys
import time
from copy import deepcopy
from datetime import datetime
from pathlib import Path

try:
    import comet_ml  # must be imported before torch (if installed)
except ImportError:
    comet_ml = None

import numpy as np
import torch
import torch.distributed as dist
import torch.nn as nn
import yaml
from torch.optim import lr_scheduler
from tqdm import tqdm

FILE = Path(__file__).resolve()
ROOT = FILE.parents[0]  # YOLOv5 root directory
if str(ROOT) not in sys.path:
    sys.path.append(str(ROOT))  # add ROOT to PATH
ROOT = Path(os.path.relpath(ROOT, Path.cwd()))  # relative

import val as validate  # for end-of-epoch mAP
from models.experimental import attempt_load
from models.yolo import Model
from utils.autoanchor import check_anchors
from utils.autobatch import check_train_batch_size
from utils.callbacks import Callbacks
from utils.dataloaders import create_dataloader
from utils.downloads import attempt_download, is_url
from utils.general import (LOGGER, TQDM_BAR_FORMAT, check_amp, check_dataset, check_file, check_git_info,
                           check_git_status, check_img_size, check_requirements, check_suffix, check_yaml, colorstr,
                           get_latest_run, increment_path, init_seeds, intersect_dicts, labels_to_class_weights,
                           labels_to_image_weights, methods, one_cycle, print_args, print_mutation, strip_optimizer,
                           yaml_save)
from utils.loggers import Loggers
from utils.loggers.comet.comet_utils import check_comet_resume
from utils.loss import ComputeLoss
from utils.metrics import fitness
from utils.plots import plot_evolve
from utils.torch_utils import (EarlyStopping, ModelEMA, de_parallel, select_device, smart_DDP, smart_optimizer,
                               smart_resume, torch_distributed_zero_first)

LOCAL_RANK = int(os.getenv('LOCAL_RANK', -1))  # https://pytorch.org/docs/stable/elastic/run.html
RANK = int(os.getenv('RANK', -1))
WORLD_SIZE = int(os.getenv('WORLD_SIZE', 1))
GIT_INFO = check_git_info()

def train(hyp, opt, device, callbacks):  # hyp is path/to/hyp.yaml or hyp dictionary
    save_dir, epochs, batch_size, weights, single_cls, evolve, data, cfg, resume, noval, nosave, workers, freeze = \
        Path(opt.save_dir), opt.epochs, opt.batch_size, opt.weights, opt.single_cls, opt.evolve, opt.data, opt.cfg, \
        opt.resume, opt.noval, opt.nosave, opt.workers, opt.freeze
    callbacks.run('on_pretrain_routine_start')

    # Directories
    w = save_dir / 'weights'  # weights dir
    (w.parent if evolve else w).mkdir(parents=True, exist_ok=True)  # make dir
    last, best = w / 'last.pt', w / 'best.pt'

    # Hyperparameters
    if isinstance(hyp, str):
        with open(hyp, errors='ignore') as f:
            hyp = yaml.safe_load(f)  # load hyps dict
    LOGGER.info(colorstr('hyperparameters: ') + ', '.join(f'{k}={v}' for k, v in hyp.items()))
    opt.hyp = hyp.copy()  # for saving hyps to checkpoints

    # Save run settings
    if not evolve:
        yaml_save(save_dir / 'hyp.yaml', hyp)
        yaml_save(save_dir / 'opt.yaml', vars(opt))

    # Loggers
    data_dict = None
    if RANK in {-1, 0}:
        loggers = Loggers(save_dir, weights, opt, hyp, LOGGER)  # loggers instance

        # Register actions
        for k in methods(loggers):
            callbacks.register_action(k, callback=getattr(loggers, k))

        # Process custom dataset artifact link
        data_dict = loggers.remote_dataset
        if resume:  # If resuming runs from remote artifact
            weights, epochs, hyp, batch_size = opt.weights, opt.epochs, opt.hyp, opt.batch_size

    # Config
    plots = not evolve and not opt.noplots  # create plots
    cuda = device.type != 'cpu'
    init_seeds(opt.seed + 1 + RANK, deterministic=True)
    with torch_distributed_zero_first(LOCAL_RANK):
        data_dict = data_dict or check_dataset(data)  # check if None
    train_path, val_path = data_dict['train'], data_dict['val']
    nc = 1 if single_cls else int(data_dict['nc'])  # number of classes
    names = {0: 'item'} if single_cls and len(data_dict['names']) != 1 else data_dict['names']  # class names
    is_coco = isinstance(val_path, str) and val_path.endswith('coco/val2017.txt')  # COCO dataset

    # Model
    check_suffix(weights, '.pt')  # check weights
    pretrained = weights.endswith('.pt')
    if pretrained:
        with torch_distributed_zero_first(LOCAL_RANK):
            weights = attempt_download(weights)  # download if not found locally
        ckpt = torch.load(weights, map_location='cpu')  # load checkpoint to CPU to avoid CUDA memory leak
        model = Model(cfg or ckpt['model'].yaml, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device)  # create
        exclude = ['anchor'] if (cfg or hyp.get('anchors')) and not resume else []  # exclude keys
        csd = ckpt['model'].float().state_dict()  # checkpoint state_dict as FP32
        csd = intersect_dicts(csd, model.state_dict(), exclude=exclude)  # intersect
        model.load_state_dict(csd, strict=False)  # load
        LOGGER.info(f'Transferred {len(csd)}/{len(model.state_dict())} items from {weights}')  # report
    else:
        model = Model(cfg, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device)  # create
    amp = check_amp(model)  # check AMP

    ################################################################################
    # Pruning
    import torch_pruning as tp
    model.eval()
    print(model)
    example_inputs = torch.randn(1, 3, opt.imgsz, opt.imgsz).to(device)
    imp = tp.importance.MagnitudeImportance(p=2) # L2 norm pruning

    ignored_layers = []
    from models.yolo import Detect
    for m in model.modules():
        if isinstance(m, (Detect)):
            ignored_layers.append(m.m)
    iterative_steps = 1 # progressive pruning
    pruner = tp.pruner.MagnitudePruner(
        model,
        example_inputs,
        importance=imp,
        iterative_steps=iterative_steps,
        pruning_ratio=opt.target_prune_rate, # remove 50% channels, ResNet18 = {64, 128, 256, 512} => ResNet18_Half = {32, 64, 128, 256}
        ignored_layers=ignored_layers,
    )
    base_macs, base_nparams = tp.utils.count_ops_and_params(model, example_inputs)
    pruner.step()

    pruned_macs, pruned_nparams = tp.utils.count_ops_and_params(model, example_inputs)
    print(model)
    print("Before Pruning: MACs=%f G, #Params=%f G"%(base_macs/1e9, base_nparams/1e9))
    print("After Pruning: MACs=%f G, #Params=%f G"%(pruned_macs/1e9, pruned_nparams/1e9))
    ####################################################################################

    # Freeze
    freeze = [f'model.{x}.' for x in (freeze if len(freeze) > 1 else range(freeze[0]))]  # layers to freeze
    for k, v in model.named_parameters():
        v.requires_grad = True  # train all layers
        # v.register_hook(lambda x: torch.nan_to_num(x))  # NaN to 0 (commented for erratic training results)
        if any(x in k for x in freeze):
            LOGGER.info(f'freezing {k}')
            v.requires_grad = False

    # Image size
    gs = max(int(model.stride.max()), 32)  # grid size (max stride)
    imgsz = check_img_size(opt.imgsz, gs, floor=gs * 2)  # verify imgsz is gs-multiple

    # Batch size
    if RANK == -1 and batch_size == -1:  # single-GPU only, estimate best batch size
        batch_size = check_train_batch_size(model, imgsz, amp)
        loggers.on_params_update({'batch_size': batch_size})

    # Optimizer
    nbs = 64  # nominal batch size
    accumulate = max(round(nbs / batch_size), 1)  # accumulate loss before optimizing
    hyp['weight_decay'] *= batch_size * accumulate / nbs  # scale weight_decay
    optimizer = smart_optimizer(model, opt.optimizer, hyp['lr0'], hyp['momentum'], hyp['weight_decay'])

    # Scheduler
    if opt.cos_lr:
        lf = one_cycle(1, hyp['lrf'], epochs)  # cosine 1->hyp['lrf']
    else:
        lf = lambda x: (1 - x / epochs) * (1.0 - hyp['lrf']) + hyp['lrf']  # linear
    scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)  # plot_lr_scheduler(optimizer, scheduler, epochs)

    # EMA
    ema = ModelEMA(model) if RANK in {-1, 0} else None

    # Resume
    best_fitness, start_epoch = 0.0, 0
    if pretrained:
        if resume:
            best_fitness, start_epoch, epochs = smart_resume(ckpt, optimizer, ema, weights, epochs, resume)
        del ckpt, csd

    # DP mode
    if cuda and RANK == -1 and torch.cuda.device_count() > 1:
        LOGGER.warning(
            'WARNING ⚠️ DP not recommended, use torch.distributed.run for best DDP Multi-GPU results.\n'
            'See Multi-GPU Tutorial at https://docs.ultralytics.com/yolov5/tutorials/multi_gpu_training to get started.'
        )
        model = torch.nn.DataParallel(model)

    # SyncBatchNorm
    if opt.sync_bn and cuda and RANK != -1:
        model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
        LOGGER.info('Using SyncBatchNorm()')

    # Trainloader
    train_loader, dataset = create_dataloader(train_path,
                                              imgsz,
                                              batch_size // WORLD_SIZE,
                                              gs,
                                              single_cls,
                                              hyp=hyp,
                                              augment=True,
                                              cache=None if opt.cache == 'val' else opt.cache,
                                              rect=opt.rect,
                                              rank=LOCAL_RANK,
                                              workers=workers,
                                              image_weights=opt.image_weights,
                                              quad=opt.quad,
                                              prefix=colorstr('train: '),
                                              shuffle=True,
                                              seed=opt.seed)
    labels = np.concatenate(dataset.labels, 0)
    mlc = int(labels[:, 0].max())  # max label class
    assert mlc < nc, f'Label class {mlc} exceeds nc={nc} in {data}. Possible class labels are 0-{nc - 1}'

    # Process 0
    if RANK in {-1, 0}:
        val_loader = create_dataloader(val_path,
                                       imgsz,
                                       batch_size // WORLD_SIZE * 2,
                                       gs,
                                       single_cls,
                                       hyp=hyp,
                                       cache=None if noval else opt.cache,
                                       rect=True,
                                       rank=-1,
                                       workers=workers * 2,
                                       pad=0.5,
                                       prefix=colorstr('val: '))[0]

        if not resume:
            if not opt.noautoanchor:
                check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz)  # run AutoAnchor
            model.half().float()  # pre-reduce anchor precision

        callbacks.run('on_pretrain_routine_end', labels, names)

    # DDP mode
    if cuda and RANK != -1:
        model = smart_DDP(model)

    # Model attributes
    nl = de_parallel(model).model[-1].nl  # number of detection layers (to scale hyps)
    hyp['box'] *= 3 / nl  # scale to layers
    hyp['cls'] *= nc / 80 * 3 / nl  # scale to classes and layers
    hyp['obj'] *= (imgsz / 640) ** 2 * 3 / nl  # scale to image size and layers
    hyp['label_smoothing'] = opt.label_smoothing
    model.nc = nc  # attach number of classes to model
    model.hyp = hyp  # attach hyperparameters to model
    model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc  # attach class weights
    model.names = names

    # Start training
    t0 = time.time()
    nb = len(train_loader)  # number of batches
    nw = max(round(hyp['warmup_epochs'] * nb), 100)  # number of warmup iterations, max(3 epochs, 100 iterations)
    # nw = min(nw, (epochs - start_epoch) / 2 * nb)  # limit warmup to < 1/2 of training
    last_opt_step = -1
    maps = np.zeros(nc)  # mAP per class
    results = (0, 0, 0, 0, 0, 0, 0)  # P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls)
    scheduler.last_epoch = start_epoch - 1  # do not move
    scaler = torch.cuda.amp.GradScaler(enabled=amp)
    stopper, stop = EarlyStopping(patience=opt.patience), False
    compute_loss = ComputeLoss(model)  # init loss class
    callbacks.run('on_train_start')
    LOGGER.info(f'Image sizes {imgsz} train, {imgsz} val\n'
                f'Using {train_loader.num_workers * WORLD_SIZE} dataloader workers\n'
                f"Logging results to {colorstr('bold', save_dir)}\n"
                f'Starting training for {epochs} epochs...')
    for epoch in range(start_epoch, epochs):  # epoch ------------------------------------------------------------------
        callbacks.run('on_train_epoch_start')
        model.train()

        # Update image weights (optional, single-GPU only)
        if opt.image_weights:
            cw = model.class_weights.cpu().numpy() * (1 - maps) ** 2 / nc  # class weights
            iw = labels_to_image_weights(dataset.labels, nc=nc, class_weights=cw)  # image weights
            dataset.indices = random.choices(range(dataset.n), weights=iw, k=dataset.n)  # rand weighted idx

        # Update mosaic border (optional)
        # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
        # dataset.mosaic_border = [b - imgsz, -b]  # height, width borders

        mloss = torch.zeros(3, device=device)  # mean losses
        if RANK != -1:
            train_loader.sampler.set_epoch(epoch)
        pbar = enumerate(train_loader)
        LOGGER.info(('\n' + '%11s' * 7) % ('Epoch', 'GPU_mem', 'box_loss', 'obj_loss', 'cls_loss', 'Instances', 'Size'))
        if RANK in {-1, 0}:
            pbar = tqdm(pbar, total=nb, bar_format=TQDM_BAR_FORMAT)  # progress bar
        optimizer.zero_grad()
        for i, (imgs, targets, paths, _) in pbar:  # batch -------------------------------------------------------------
            callbacks.run('on_train_batch_start')
            ni = i + nb * epoch  # number integrated batches (since train start)
            imgs = imgs.to(device, non_blocking=True).float() / 255  # uint8 to float32, 0-255 to 0.0-1.0

            # Warmup
            if ni <= nw:
                xi = [0, nw]  # x interp
                # compute_loss.gr = np.interp(ni, xi, [0.0, 1.0])  # iou loss ratio (obj_loss = 1.0 or iou)
                accumulate = max(1, np.interp(ni, xi, [1, nbs / batch_size]).round())
                for j, x in enumerate(optimizer.param_groups):
                    # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
                    x['lr'] = np.interp(ni, xi, [hyp['warmup_bias_lr'] if j == 0 else 0.0, x['initial_lr'] * lf(epoch)])
                    if 'momentum' in x:
                        x['momentum'] = np.interp(ni, xi, [hyp['warmup_momentum'], hyp['momentum']])

            # Multi-scale
            if opt.multi_scale:
                sz = random.randrange(int(imgsz * 0.5), int(imgsz * 1.5) + gs) // gs * gs  # size
                sf = sz / max(imgs.shape[2:])  # scale factor
                if sf != 1:
                    ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]]  # new shape (stretched to gs-multiple)
                    imgs = nn.functional.interpolate(imgs, size=ns, mode='bilinear', align_corners=False)

            # Forward
            with torch.cuda.amp.autocast(amp):
                pred = model(imgs)  # forward
                loss, loss_items = compute_loss(pred, targets.to(device))  # loss scaled by batch_size
                if RANK != -1:
                    loss *= WORLD_SIZE  # gradient averaged between devices in DDP mode
                if opt.quad:
                    loss *= 4.

            # Backward
            scaler.scale(loss).backward()

            # Optimize - https://pytorch.org/docs/master/notes/amp_examples.html
            if ni - last_opt_step >= accumulate:
                scaler.unscale_(optimizer)  # unscale gradients
                torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=10.0)  # clip gradients
                scaler.step(optimizer)  # optimizer.step
                scaler.update()
                optimizer.zero_grad()
                if ema:
                    ema.update(model)
                last_opt_step = ni

            # Log
            if RANK in {-1, 0}:
                mloss = (mloss * i + loss_items) / (i + 1)  # update mean losses
                mem = f'{torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0:.3g}G'  # (GB)
                pbar.set_description(('%11s' * 2 + '%11.4g' * 5) %
                                     (f'{epoch}/{epochs - 1}', mem, *mloss, targets.shape[0], imgs.shape[-1]))
                callbacks.run('on_train_batch_end', model, ni, imgs, targets, paths, list(mloss))
                if callbacks.stop_training:
                    return
            # end batch ------------------------------------------------------------------------------------------------

        # Scheduler
        lr = [x['lr'] for x in optimizer.param_groups]  # for loggers
        scheduler.step()

        if RANK in {-1, 0}:
            # mAP
            callbacks.run('on_train_epoch_end', epoch=epoch)
            ema.update_attr(model, include=['yaml', 'nc', 'hyp', 'names', 'stride', 'class_weights'])
            final_epoch = (epoch + 1 == epochs) or stopper.possible_stop
            if not noval or final_epoch:  # Calculate mAP
                results, maps, _ = validate.run(data_dict,
                                                batch_size=batch_size // WORLD_SIZE * 2,
                                                imgsz=imgsz,
                                                half=amp,
                                                model=ema.ema,
                                                single_cls=single_cls,
                                                dataloader=val_loader,
                                                save_dir=save_dir,
                                                plots=False,
                                                callbacks=callbacks,
                                                compute_loss=compute_loss)

            # Update best mAP
            fi = fitness(np.array(results).reshape(1, -1))  # weighted combination of [P, R, mAP@.5, mAP@.5-.95]
            stop = stopper(epoch=epoch, fitness=fi)  # early stop check
            if fi > best_fitness:
                best_fitness = fi
            log_vals = list(mloss) + list(results) + lr
            callbacks.run('on_fit_epoch_end', log_vals, epoch, best_fitness, fi)

            # Save model
            if (not nosave) or (final_epoch and not evolve):  # if save
                ckpt = {
                    'epoch': epoch,
                    'best_fitness': best_fitness,
                    'model': deepcopy(de_parallel(model)).half(),
                    'ema': deepcopy(ema.ema).half(),
                    'updates': ema.updates,
                    'optimizer': optimizer.state_dict(),
                    'opt': vars(opt),
                    'git': GIT_INFO,  # {remote, branch, commit} if a git repo
                    'date': datetime.now().isoformat()}

                # Save last, best and delete
                torch.save(ckpt, last)
                if best_fitness == fi:
                    torch.save(ckpt, best)
                if opt.save_period > 0 and epoch % opt.save_period == 0:
                    torch.save(ckpt, w / f'epoch{epoch}.pt')
                del ckpt
                callbacks.run('on_model_save', last, epoch, final_epoch, best_fitness, fi)

        # EarlyStopping
        if RANK != -1:  # if DDP training
            broadcast_list = [stop if RANK == 0 else None]
            dist.broadcast_object_list(broadcast_list, 0)  # broadcast 'stop' to all ranks
            if RANK != 0:
                stop = broadcast_list[0]
        if stop:
            break  # must break all DDP ranks

        # end epoch ----------------------------------------------------------------------------------------------------
    # end training -----------------------------------------------------------------------------------------------------
    if RANK in {-1, 0}:
        LOGGER.info(f'\n{epoch - start_epoch + 1} epochs completed in {(time.time() - t0) / 3600:.3f} hours.')
        for f in last, best:
            if f.exists():
                strip_optimizer(f)  # strip optimizers
                if f is best:
                    LOGGER.info(f'\nValidating {f}...')
                    results, _, _ = validate.run(
                        data_dict,
                        batch_size=batch_size // WORLD_SIZE * 2,
                        imgsz=imgsz,
                        model=attempt_load(f, device).half(),
                        iou_thres=0.65 if is_coco else 0.60,  # best pycocotools at iou 0.65
                        single_cls=single_cls,
                        dataloader=val_loader,
                        save_dir=save_dir,
                        save_json=is_coco,
                        verbose=True,
                        plots=plots,
                        callbacks=callbacks,
                        compute_loss=compute_loss)  # val best model with plots
                    if is_coco:
                        callbacks.run('on_fit_epoch_end', list(mloss) + list(results) + lr, epoch, best_fitness, fi)

        callbacks.run('on_train_end', last, best, epoch, results)

    torch.cuda.empty_cache()
    return results

def parse_opt(known=False):
    parser = argparse.ArgumentParser()
    parser.add_argument('--weights', type=str, default=ROOT / 'yolov5s.pt', help='initial weights path')
    parser.add_argument('--cfg', type=str, default='', help='model.yaml path')
    parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path')
    parser.add_argument('--hyp', type=str, default=ROOT / 'data/hyps/hyp.scratch-low.yaml', help='hyperparameters path')
    parser.add_argument('--epochs', type=int, default=100, help='total training epochs')
    parser.add_argument('--batch-size', type=int, default=16, help='total batch size for all GPUs, -1 for autobatch')
    parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='train, val image size (pixels)')
    parser.add_argument('--rect', action='store_true', help='rectangular training')
    parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training')
    parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
    parser.add_argument('--noval', action='store_true', help='only validate final epoch')
    parser.add_argument('--noautoanchor', action='store_true', help='disable AutoAnchor')
    parser.add_argument('--noplots', action='store_true', help='save no plot files')
    parser.add_argument('--evolve', type=int, nargs='?', const=300, help='evolve hyperparameters for x generations')
    parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
    parser.add_argument('--cache', type=str, nargs='?', const='ram', help='image --cache ram/disk')
    parser.add_argument('--image-weights', action='store_true', help='use weighted image selection for training')
    parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
    parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%')
    parser.add_argument('--single-cls', action='store_true', help='train multi-class data as single-class')
    parser.add_argument('--optimizer', type=str, choices=['SGD', 'Adam', 'AdamW'], default='SGD', help='optimizer')
    parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode')
    parser.add_argument('--workers', type=int, default=8, help='max dataloader workers (per RANK in DDP mode)')
    parser.add_argument('--project', default=ROOT / 'runs/train', help='save to project/name')
    parser.add_argument('--name', default='exp', help='save to project/name')
    parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
    parser.add_argument('--quad', action='store_true', help='quad dataloader')
    parser.add_argument('--cos-lr', action='store_true', help='cosine LR scheduler')
    parser.add_argument('--label-smoothing', type=float, default=0.0, help='Label smoothing epsilon')
    parser.add_argument('--patience', type=int, default=100, help='EarlyStopping patience (epochs without improvement)')
    parser.add_argument('--freeze', nargs='+', type=int, default=[0], help='Freeze layers: backbone=10, first3=0 1 2')
    parser.add_argument('--save-period', type=int, default=-1, help='Save checkpoint every x epochs (disabled if < 1)')
    parser.add_argument('--seed', type=int, default=0, help='Global training seed')
    parser.add_argument('--local_rank', type=int, default=-1, help='Automatic DDP Multi-GPU argument, do not modify')
    parser.add_argument('--target-prune-rate', default=0.5, type=float, help='Target pruning rate')
    # Logger arguments
    parser.add_argument('--entity', default=None, help='Entity')
    parser.add_argument('--upload_dataset', nargs='?', const=True, default=False, help='Upload data, "val" option')
    parser.add_argument('--bbox_interval', type=int, default=-1, help='Set bounding-box image logging interval')
    parser.add_argument('--artifact_alias', type=str, default='latest', help='Version of dataset artifact to use')

    return parser.parse_known_args()[0] if known else parser.parse_args()

def main(opt, callbacks=Callbacks()):
    # Checks
    if RANK in {-1, 0}:
        print_args(vars(opt))
        check_git_status()
        check_requirements(ROOT / 'requirements.txt')

    # Resume (from specified or most recent last.pt)
    if opt.resume and not check_comet_resume(opt) and not opt.evolve:
        last = Path(check_file(opt.resume) if isinstance(opt.resume, str) else get_latest_run())
        opt_yaml = last.parent.parent / 'opt.yaml'  # train options yaml
        opt_data = opt.data  # original dataset
        if opt_yaml.is_file():
            with open(opt_yaml, errors='ignore') as f:
                d = yaml.safe_load(f)
        else:
            d = torch.load(last, map_location='cpu')['opt']
        opt = argparse.Namespace(**d)  # replace
        opt.cfg, opt.weights, opt.resume = '', str(last), True  # reinstate
        if is_url(opt_data):
            opt.data = check_file(opt_data)  # avoid HUB resume auth timeout
    else:
        opt.data, opt.cfg, opt.hyp, opt.weights, opt.project = \
            check_file(opt.data), check_yaml(opt.cfg), check_yaml(opt.hyp), str(opt.weights), str(opt.project)  # checks
        assert len(opt.cfg) or len(opt.weights), 'either --cfg or --weights must be specified'
        if opt.evolve:
            if opt.project == str(ROOT / 'runs/train'):  # if default project name, rename to runs/evolve
                opt.project = str(ROOT / 'runs/evolve')
            opt.exist_ok, opt.resume = opt.resume, False  # pass resume to exist_ok and disable resume
        if opt.name == 'cfg':
            opt.name = Path(opt.cfg).stem  # use model.yaml as name
        opt.save_dir = str(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok))

    # DDP mode
    device = select_device(opt.device, batch_size=opt.batch_size)
    if LOCAL_RANK != -1:
        msg = 'is not compatible with YOLOv5 Multi-GPU DDP training'
        assert not opt.image_weights, f'--image-weights {msg}'
        assert not opt.evolve, f'--evolve {msg}'
        assert opt.batch_size != -1, f'AutoBatch with --batch-size -1 {msg}, please pass a valid --batch-size'
        assert opt.batch_size % WORLD_SIZE == 0, f'--batch-size {opt.batch_size} must be multiple of WORLD_SIZE'
        assert torch.cuda.device_count() > LOCAL_RANK, 'insufficient CUDA devices for DDP command'
        torch.cuda.set_device(LOCAL_RANK)
        device = torch.device('cuda', LOCAL_RANK)
        dist.init_process_group(backend='nccl' if dist.is_nccl_available() else 'gloo')

    # Train
    if not opt.evolve:
        train(opt.hyp, opt, device, callbacks)

    # Evolve hyperparameters (optional)
    else:
        # Hyperparameter evolution metadata (mutation scale 0-1, lower_limit, upper_limit)
        meta = {
            'lr0': (1, 1e-5, 1e-1),  # initial learning rate (SGD=1E-2, Adam=1E-3)
            'lrf': (1, 0.01, 1.0),  # final OneCycleLR learning rate (lr0 * lrf)
            'momentum': (0.3, 0.6, 0.98),  # SGD momentum/Adam beta1
            'weight_decay': (1, 0.0, 0.001),  # optimizer weight decay
            'warmup_epochs': (1, 0.0, 5.0),  # warmup epochs (fractions ok)
            'warmup_momentum': (1, 0.0, 0.95),  # warmup initial momentum
            'warmup_bias_lr': (1, 0.0, 0.2),  # warmup initial bias lr
            'box': (1, 0.02, 0.2),  # box loss gain
            'cls': (1, 0.2, 4.0),  # cls loss gain
            'cls_pw': (1, 0.5, 2.0),  # cls BCELoss positive_weight
            'obj': (1, 0.2, 4.0),  # obj loss gain (scale with pixels)
            'obj_pw': (1, 0.5, 2.0),  # obj BCELoss positive_weight
            'iou_t': (0, 0.1, 0.7),  # IoU training threshold
            'anchor_t': (1, 2.0, 8.0),  # anchor-multiple threshold
            'anchors': (2, 2.0, 10.0),  # anchors per output grid (0 to ignore)
            'fl_gamma': (0, 0.0, 2.0),  # focal loss gamma (efficientDet default gamma=1.5)
            'hsv_h': (1, 0.0, 0.1),  # image HSV-Hue augmentation (fraction)
            'hsv_s': (1, 0.0, 0.9),  # image HSV-Saturation augmentation (fraction)
            'hsv_v': (1, 0.0, 0.9),  # image HSV-Value augmentation (fraction)
            'degrees': (1, 0.0, 45.0),  # image rotation (+/- deg)
            'translate': (1, 0.0, 0.9),  # image translation (+/- fraction)
            'scale': (1, 0.0, 0.9),  # image scale (+/- gain)
            'shear': (1, 0.0, 10.0),  # image shear (+/- deg)
            'perspective': (0, 0.0, 0.001),  # image perspective (+/- fraction), range 0-0.001
            'flipud': (1, 0.0, 1.0),  # image flip up-down (probability)
            'fliplr': (0, 0.0, 1.0),  # image flip left-right (probability)
            'mosaic': (1, 0.0, 1.0),  # image mixup (probability)
            'mixup': (1, 0.0, 1.0),  # image mixup (probability)
            'copy_paste': (1, 0.0, 1.0)}  # segment copy-paste (probability)

        with open(opt.hyp, errors='ignore') as f:
            hyp = yaml.safe_load(f)  # load hyps dict
            if 'anchors' not in hyp:  # anchors commented in hyp.yaml
                hyp['anchors'] = 3
        if opt.noautoanchor:
            del hyp['anchors'], meta['anchors']
        opt.noval, opt.nosave, save_dir = True, True, Path(opt.save_dir)  # only val/save final epoch
        # ei = [isinstance(x, (int, float)) for x in hyp.values()]  # evolvable indices
        evolve_yaml, evolve_csv = save_dir / 'hyp_evolve.yaml', save_dir / 'evolve.csv'
        if opt.bucket:
            # download evolve.csv if exists
            subprocess.run([
                'gsutil',
                'cp',
                f'gs://{opt.bucket}/evolve.csv',
                str(evolve_csv), ])

        for _ in range(opt.evolve):  # generations to evolve
            if evolve_csv.exists():  # if evolve.csv exists: select best hyps and mutate
                # Select parent(s)
                parent = 'single'  # parent selection method: 'single' or 'weighted'
                x = np.loadtxt(evolve_csv, ndmin=2, delimiter=',', skiprows=1)
                n = min(5, len(x))  # number of previous results to consider
                x = x[np.argsort(-fitness(x))][:n]  # top n mutations
                w = fitness(x) - fitness(x).min() + 1E-6  # weights (sum > 0)
                if parent == 'single' or len(x) == 1:
                    # x = x[random.randint(0, n - 1)]  # random selection
                    x = x[random.choices(range(n), weights=w)[0]]  # weighted selection
                elif parent == 'weighted':
                    x = (x * w.reshape(n, 1)).sum(0) / w.sum()  # weighted combination

                # Mutate
                mp, s = 0.8, 0.2  # mutation probability, sigma
                npr = np.random
                npr.seed(int(time.time()))
                g = np.array([meta[k][0] for k in hyp.keys()])  # gains 0-1
                ng = len(meta)
                v = np.ones(ng)
                while all(v == 1):  # mutate until a change occurs (prevent duplicates)
                    v = (g * (npr.random(ng) < mp) * npr.randn(ng) * npr.random() * s + 1).clip(0.3, 3.0)
                for i, k in enumerate(hyp.keys()):  # plt.hist(v.ravel(), 300)
                    hyp[k] = float(x[i + 7] * v[i])  # mutate

            # Constrain to limits
            for k, v in meta.items():
                hyp[k] = max(hyp[k], v[1])  # lower limit
                hyp[k] = min(hyp[k], v[2])  # upper limit
                hyp[k] = round(hyp[k], 5)  # significant digits

            # Train mutation
            results = train(hyp.copy(), opt, device, callbacks)
            callbacks = Callbacks()
            # Write mutation results
            keys = ('metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/mAP_0.5:0.95', 'val/box_loss',
                    'val/obj_loss', 'val/cls_loss')
            print_mutation(keys, results, hyp.copy(), save_dir, opt.bucket)

        # Plot results
        plot_evolve(evolve_csv)
        LOGGER.info(f'Hyperparameter evolution finished {opt.evolve} generations\n'
                    f"Results saved to {colorstr('bold', save_dir)}\n"
                    f'Usage example: $ python train.py --hyp {evolve_yaml}')

def run(**kwargs):
    # Usage: import train; train.run(data='coco128.yaml', imgsz=320, weights='yolov5m.pt')
    opt = parse_opt(True)
    for k, v in kwargs.items():
        setattr(opt, k, v)
    main(opt)
    return opt

if __name__ == '__main__':
    opt = parse_opt()
    main(opt)

Thanks again, I've tried your method but find that the mAP after training is not up to the original level, any way to fine tune it? thanks

LorenzoSun-V commented 1 year ago

Try this script:

python train_after_pruning.py \
   --weights ${pretrained} \
   --cfg ${cfg} \
   --batch-size ${bs} \
   --data ${data} \
   --device ${device} \
   --project ${project} \
   --name ${name} \
   --epochs ${epochs} \
   --imgsz ${imgsz} \
   --target-prune-rate ${rate}

--weights: path of fp32 model --cfg: cfg file of corresponding model --data: path of your dataset yaml file --imgsz: trainning image size --target-prune-rate: ratio of pruning, 0.3 or 0.5

The mAP after pruning may be lower, but not a lot. In my case, mAP@.5 is as the same as before, but mAP@.5:.95 is 1% lower.

AFallDay commented 12 months ago

Try this script:

python train_after_pruning.py \
   --weights ${pretrained} \
   --cfg ${cfg} \
   --batch-size ${bs} \
   --data ${data} \
   --device ${device} \
   --project ${project} \
   --name ${name} \
   --epochs ${epochs} \
   --imgsz ${imgsz} \
   --target-prune-rate ${rate}

--weights: path of fp32 model --cfg: cfg file of corresponding model --data: path of your dataset yaml file --imgsz: trainning image size --target-prune-rate: ratio of pruning, 0.3 or 0.5

The mAP after pruning may be lower, but not a lot. In my case, mAP@.5 is as the same as before, but mAP@.5:.95 is 1% lower.

thanks, but I can't find the file named train_after_pruning.py, how can I get it ?please

LorenzoSun-V commented 12 months ago

Actually, just copy above code I provided to a file and name this file as "train_after_pruning.py".

max190 commented 11 months ago

Try this script:

python train_after_pruning.py \
   --weights ${pretrained} \
   --cfg ${cfg} \
   --batch-size ${bs} \
   --data ${data} \
   --device ${device} \
   --project ${project} \
   --name ${name} \
   --epochs ${epochs} \
   --imgsz ${imgsz} \
   --target-prune-rate ${rate}

--weights: path of fp32 model --cfg: cfg file of corresponding model --data: path of your dataset yaml file --imgsz: trainning image size --target-prune-rate: ratio of pruning, 0.3 or 0.5

The mAP after pruning may be lower, but not a lot. In my case, mAP@.5 is as the same as before, but mAP@.5:.95 is 1% lower.

@LorenzoSun-V thanks for the train_after_pruning script. I was having some issues in getting good accuracy in retraining after pruning in case of COCO dataset and yolov5s model architecture. Can you please tell me for what dataset and model configuration you got, mAP@.5 is as the same as before, but mAP@.5:.95 is 1% lower as you had stated. Also, in my case I trained for 100 epochs with image size 320 and target prune rate of 0.5. But my mAP did drop significantly 0.34 from 0.48 in case of reference yolov5s model.

LorenzoSun-V commented 11 months ago

@max190 , in my case, the dataset is labeled well and the task is relatively easy(just 2 classes for detection, and the features of each class are quite explicit). I suspect some important channels in your case had been pruned so your mAP was much lower even after training. Maybe you can try to use yolov5m and 0.3 pruning ratio.

maolinLiu666 commented 9 months ago

@max190 , in my case, the dataset is labeled well and the task is relatively easy(just 2 classes for detection, and the features of each class are quite explicit). I suspect some important channels in your case had been pruned so your mAP was much lower even after training. Maybe you can try to use yolov5m and 0.3 pruning ratio.

@LorenzoSun-V Thank you for providing the pruning code for v5. I ran it smoothly with it, but when I used it for inference in the video, the effect became unsatisfactory, and many targets were not detected. Is there still code that needs fine-tuning? Can you provide some code for fine-tuning? Thank you for your answer. Looking forward to hearing from you

dengxiongshi commented 2 months ago

@maolinLiu666 I also got the same. Have you solved it?

happyiminjay1 commented 1 month ago

@max190 , in my case, the dataset is labeled well and the task is relatively easy(just 2 classes for detection, and the features of each class are quite explicit). I suspect some important channels in your case had been pruned so your mAP was much lower even after training. Maybe you can try to use yolov5m and 0.3 pruning ratio.

@LorenzoSun-V Thank you for providing the pruning code for v5. I ran it smoothly with it, but when I used it for inference in the video, the effect became unsatisfactory, and many targets were not detected. Is there still code that needs fine-tuning? Can you provide some code for fine-tuning? Thank you for your answer. Looking forward to hearing from you

image from https://arxiv.org/pdf/1506.02626

MealHunter commented 12 hours ago

I referred to yolov7's code and tested it on yolov5-v7.0 successfully. Hope this is helpful.

import argparse
import math
import os
import random
import subprocess
import sys
import time
from copy import deepcopy
from datetime import datetime
from pathlib import Path

try:
    import comet_ml  # must be imported before torch (if installed)
except ImportError:
    comet_ml = None

import numpy as np
import torch
import torch.distributed as dist
import torch.nn as nn
import yaml
from torch.optim import lr_scheduler
from tqdm import tqdm

FILE = Path(__file__).resolve()
ROOT = FILE.parents[0]  # YOLOv5 root directory
if str(ROOT) not in sys.path:
    sys.path.append(str(ROOT))  # add ROOT to PATH
ROOT = Path(os.path.relpath(ROOT, Path.cwd()))  # relative

import val as validate  # for end-of-epoch mAP
from models.experimental import attempt_load
from models.yolo import Model
from utils.autoanchor import check_anchors
from utils.autobatch import check_train_batch_size
from utils.callbacks import Callbacks
from utils.dataloaders import create_dataloader
from utils.downloads import attempt_download, is_url
from utils.general import (LOGGER, TQDM_BAR_FORMAT, check_amp, check_dataset, check_file, check_git_info,
                           check_git_status, check_img_size, check_requirements, check_suffix, check_yaml, colorstr,
                           get_latest_run, increment_path, init_seeds, intersect_dicts, labels_to_class_weights,
                           labels_to_image_weights, methods, one_cycle, print_args, print_mutation, strip_optimizer,
                           yaml_save)
from utils.loggers import Loggers
from utils.loggers.comet.comet_utils import check_comet_resume
from utils.loss import ComputeLoss
from utils.metrics import fitness
from utils.plots import plot_evolve
from utils.torch_utils import (EarlyStopping, ModelEMA, de_parallel, select_device, smart_DDP, smart_optimizer,
                               smart_resume, torch_distributed_zero_first)

LOCAL_RANK = int(os.getenv('LOCAL_RANK', -1))  # https://pytorch.org/docs/stable/elastic/run.html
RANK = int(os.getenv('RANK', -1))
WORLD_SIZE = int(os.getenv('WORLD_SIZE', 1))
GIT_INFO = check_git_info()

def train(hyp, opt, device, callbacks):  # hyp is path/to/hyp.yaml or hyp dictionary
    save_dir, epochs, batch_size, weights, single_cls, evolve, data, cfg, resume, noval, nosave, workers, freeze = \
        Path(opt.save_dir), opt.epochs, opt.batch_size, opt.weights, opt.single_cls, opt.evolve, opt.data, opt.cfg, \
        opt.resume, opt.noval, opt.nosave, opt.workers, opt.freeze
    callbacks.run('on_pretrain_routine_start')

    # Directories
    w = save_dir / 'weights'  # weights dir
    (w.parent if evolve else w).mkdir(parents=True, exist_ok=True)  # make dir
    last, best = w / 'last.pt', w / 'best.pt'

    # Hyperparameters
    if isinstance(hyp, str):
        with open(hyp, errors='ignore') as f:
            hyp = yaml.safe_load(f)  # load hyps dict
    LOGGER.info(colorstr('hyperparameters: ') + ', '.join(f'{k}={v}' for k, v in hyp.items()))
    opt.hyp = hyp.copy()  # for saving hyps to checkpoints

    # Save run settings
    if not evolve:
        yaml_save(save_dir / 'hyp.yaml', hyp)
        yaml_save(save_dir / 'opt.yaml', vars(opt))

    # Loggers
    data_dict = None
    if RANK in {-1, 0}:
        loggers = Loggers(save_dir, weights, opt, hyp, LOGGER)  # loggers instance

        # Register actions
        for k in methods(loggers):
            callbacks.register_action(k, callback=getattr(loggers, k))

        # Process custom dataset artifact link
        data_dict = loggers.remote_dataset
        if resume:  # If resuming runs from remote artifact
            weights, epochs, hyp, batch_size = opt.weights, opt.epochs, opt.hyp, opt.batch_size

    # Config
    plots = not evolve and not opt.noplots  # create plots
    cuda = device.type != 'cpu'
    init_seeds(opt.seed + 1 + RANK, deterministic=True)
    with torch_distributed_zero_first(LOCAL_RANK):
        data_dict = data_dict or check_dataset(data)  # check if None
    train_path, val_path = data_dict['train'], data_dict['val']
    nc = 1 if single_cls else int(data_dict['nc'])  # number of classes
    names = {0: 'item'} if single_cls and len(data_dict['names']) != 1 else data_dict['names']  # class names
    is_coco = isinstance(val_path, str) and val_path.endswith('coco/val2017.txt')  # COCO dataset

    # Model
    check_suffix(weights, '.pt')  # check weights
    pretrained = weights.endswith('.pt')
    if pretrained:
        with torch_distributed_zero_first(LOCAL_RANK):
            weights = attempt_download(weights)  # download if not found locally
        ckpt = torch.load(weights, map_location='cpu')  # load checkpoint to CPU to avoid CUDA memory leak
        model = Model(cfg or ckpt['model'].yaml, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device)  # create
        exclude = ['anchor'] if (cfg or hyp.get('anchors')) and not resume else []  # exclude keys
        csd = ckpt['model'].float().state_dict()  # checkpoint state_dict as FP32
        csd = intersect_dicts(csd, model.state_dict(), exclude=exclude)  # intersect
        model.load_state_dict(csd, strict=False)  # load
        LOGGER.info(f'Transferred {len(csd)}/{len(model.state_dict())} items from {weights}')  # report
    else:
        model = Model(cfg, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device)  # create
    amp = check_amp(model)  # check AMP

    ################################################################################
    # Pruning
    import torch_pruning as tp
    model.eval()
    print(model)
    example_inputs = torch.randn(1, 3, opt.imgsz, opt.imgsz).to(device)
    imp = tp.importance.MagnitudeImportance(p=2) # L2 norm pruning

    ignored_layers = []
    from models.yolo import Detect
    for m in model.modules():
        if isinstance(m, (Detect)):
            ignored_layers.append(m.m)
    iterative_steps = 1 # progressive pruning
    pruner = tp.pruner.MagnitudePruner(
        model,
        example_inputs,
        importance=imp,
        iterative_steps=iterative_steps,
        pruning_ratio=opt.target_prune_rate, # remove 50% channels, ResNet18 = {64, 128, 256, 512} => ResNet18_Half = {32, 64, 128, 256}
        ignored_layers=ignored_layers,
    )
    base_macs, base_nparams = tp.utils.count_ops_and_params(model, example_inputs)
    pruner.step()

    pruned_macs, pruned_nparams = tp.utils.count_ops_and_params(model, example_inputs)
    print(model)
    print("Before Pruning: MACs=%f G, #Params=%f G"%(base_macs/1e9, base_nparams/1e9))
    print("After Pruning: MACs=%f G, #Params=%f G"%(pruned_macs/1e9, pruned_nparams/1e9))
    ####################################################################################

    # Freeze
    freeze = [f'model.{x}.' for x in (freeze if len(freeze) > 1 else range(freeze[0]))]  # layers to freeze
    for k, v in model.named_parameters():
        v.requires_grad = True  # train all layers
        # v.register_hook(lambda x: torch.nan_to_num(x))  # NaN to 0 (commented for erratic training results)
        if any(x in k for x in freeze):
            LOGGER.info(f'freezing {k}')
            v.requires_grad = False

    # Image size
    gs = max(int(model.stride.max()), 32)  # grid size (max stride)
    imgsz = check_img_size(opt.imgsz, gs, floor=gs * 2)  # verify imgsz is gs-multiple

    # Batch size
    if RANK == -1 and batch_size == -1:  # single-GPU only, estimate best batch size
        batch_size = check_train_batch_size(model, imgsz, amp)
        loggers.on_params_update({'batch_size': batch_size})

    # Optimizer
    nbs = 64  # nominal batch size
    accumulate = max(round(nbs / batch_size), 1)  # accumulate loss before optimizing
    hyp['weight_decay'] *= batch_size * accumulate / nbs  # scale weight_decay
    optimizer = smart_optimizer(model, opt.optimizer, hyp['lr0'], hyp['momentum'], hyp['weight_decay'])

    # Scheduler
    if opt.cos_lr:
        lf = one_cycle(1, hyp['lrf'], epochs)  # cosine 1->hyp['lrf']
    else:
        lf = lambda x: (1 - x / epochs) * (1.0 - hyp['lrf']) + hyp['lrf']  # linear
    scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)  # plot_lr_scheduler(optimizer, scheduler, epochs)

    # EMA
    ema = ModelEMA(model) if RANK in {-1, 0} else None

    # Resume
    best_fitness, start_epoch = 0.0, 0
    if pretrained:
        if resume:
            best_fitness, start_epoch, epochs = smart_resume(ckpt, optimizer, ema, weights, epochs, resume)
        del ckpt, csd

    # DP mode
    if cuda and RANK == -1 and torch.cuda.device_count() > 1:
        LOGGER.warning(
            'WARNING ⚠️ DP not recommended, use torch.distributed.run for best DDP Multi-GPU results.\n'
            'See Multi-GPU Tutorial at https://docs.ultralytics.com/yolov5/tutorials/multi_gpu_training to get started.'
        )
        model = torch.nn.DataParallel(model)

    # SyncBatchNorm
    if opt.sync_bn and cuda and RANK != -1:
        model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
        LOGGER.info('Using SyncBatchNorm()')

    # Trainloader
    train_loader, dataset = create_dataloader(train_path,
                                              imgsz,
                                              batch_size // WORLD_SIZE,
                                              gs,
                                              single_cls,
                                              hyp=hyp,
                                              augment=True,
                                              cache=None if opt.cache == 'val' else opt.cache,
                                              rect=opt.rect,
                                              rank=LOCAL_RANK,
                                              workers=workers,
                                              image_weights=opt.image_weights,
                                              quad=opt.quad,
                                              prefix=colorstr('train: '),
                                              shuffle=True,
                                              seed=opt.seed)
    labels = np.concatenate(dataset.labels, 0)
    mlc = int(labels[:, 0].max())  # max label class
    assert mlc < nc, f'Label class {mlc} exceeds nc={nc} in {data}. Possible class labels are 0-{nc - 1}'

    # Process 0
    if RANK in {-1, 0}:
        val_loader = create_dataloader(val_path,
                                       imgsz,
                                       batch_size // WORLD_SIZE * 2,
                                       gs,
                                       single_cls,
                                       hyp=hyp,
                                       cache=None if noval else opt.cache,
                                       rect=True,
                                       rank=-1,
                                       workers=workers * 2,
                                       pad=0.5,
                                       prefix=colorstr('val: '))[0]

        if not resume:
            if not opt.noautoanchor:
                check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz)  # run AutoAnchor
            model.half().float()  # pre-reduce anchor precision

        callbacks.run('on_pretrain_routine_end', labels, names)

    # DDP mode
    if cuda and RANK != -1:
        model = smart_DDP(model)

    # Model attributes
    nl = de_parallel(model).model[-1].nl  # number of detection layers (to scale hyps)
    hyp['box'] *= 3 / nl  # scale to layers
    hyp['cls'] *= nc / 80 * 3 / nl  # scale to classes and layers
    hyp['obj'] *= (imgsz / 640) ** 2 * 3 / nl  # scale to image size and layers
    hyp['label_smoothing'] = opt.label_smoothing
    model.nc = nc  # attach number of classes to model
    model.hyp = hyp  # attach hyperparameters to model
    model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc  # attach class weights
    model.names = names

    # Start training
    t0 = time.time()
    nb = len(train_loader)  # number of batches
    nw = max(round(hyp['warmup_epochs'] * nb), 100)  # number of warmup iterations, max(3 epochs, 100 iterations)
    # nw = min(nw, (epochs - start_epoch) / 2 * nb)  # limit warmup to < 1/2 of training
    last_opt_step = -1
    maps = np.zeros(nc)  # mAP per class
    results = (0, 0, 0, 0, 0, 0, 0)  # P, R, mAP@.5, mAP@.5-.95, val_loss(box, obj, cls)
    scheduler.last_epoch = start_epoch - 1  # do not move
    scaler = torch.cuda.amp.GradScaler(enabled=amp)
    stopper, stop = EarlyStopping(patience=opt.patience), False
    compute_loss = ComputeLoss(model)  # init loss class
    callbacks.run('on_train_start')
    LOGGER.info(f'Image sizes {imgsz} train, {imgsz} val\n'
                f'Using {train_loader.num_workers * WORLD_SIZE} dataloader workers\n'
                f"Logging results to {colorstr('bold', save_dir)}\n"
                f'Starting training for {epochs} epochs...')
    for epoch in range(start_epoch, epochs):  # epoch ------------------------------------------------------------------
        callbacks.run('on_train_epoch_start')
        model.train()

        # Update image weights (optional, single-GPU only)
        if opt.image_weights:
            cw = model.class_weights.cpu().numpy() * (1 - maps) ** 2 / nc  # class weights
            iw = labels_to_image_weights(dataset.labels, nc=nc, class_weights=cw)  # image weights
            dataset.indices = random.choices(range(dataset.n), weights=iw, k=dataset.n)  # rand weighted idx

        # Update mosaic border (optional)
        # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
        # dataset.mosaic_border = [b - imgsz, -b]  # height, width borders

        mloss = torch.zeros(3, device=device)  # mean losses
        if RANK != -1:
            train_loader.sampler.set_epoch(epoch)
        pbar = enumerate(train_loader)
        LOGGER.info(('\n' + '%11s' * 7) % ('Epoch', 'GPU_mem', 'box_loss', 'obj_loss', 'cls_loss', 'Instances', 'Size'))
        if RANK in {-1, 0}:
            pbar = tqdm(pbar, total=nb, bar_format=TQDM_BAR_FORMAT)  # progress bar
        optimizer.zero_grad()
        for i, (imgs, targets, paths, _) in pbar:  # batch -------------------------------------------------------------
            callbacks.run('on_train_batch_start')
            ni = i + nb * epoch  # number integrated batches (since train start)
            imgs = imgs.to(device, non_blocking=True).float() / 255  # uint8 to float32, 0-255 to 0.0-1.0

            # Warmup
            if ni <= nw:
                xi = [0, nw]  # x interp
                # compute_loss.gr = np.interp(ni, xi, [0.0, 1.0])  # iou loss ratio (obj_loss = 1.0 or iou)
                accumulate = max(1, np.interp(ni, xi, [1, nbs / batch_size]).round())
                for j, x in enumerate(optimizer.param_groups):
                    # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
                    x['lr'] = np.interp(ni, xi, [hyp['warmup_bias_lr'] if j == 0 else 0.0, x['initial_lr'] * lf(epoch)])
                    if 'momentum' in x:
                        x['momentum'] = np.interp(ni, xi, [hyp['warmup_momentum'], hyp['momentum']])

            # Multi-scale
            if opt.multi_scale:
                sz = random.randrange(int(imgsz * 0.5), int(imgsz * 1.5) + gs) // gs * gs  # size
                sf = sz / max(imgs.shape[2:])  # scale factor
                if sf != 1:
                    ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]]  # new shape (stretched to gs-multiple)
                    imgs = nn.functional.interpolate(imgs, size=ns, mode='bilinear', align_corners=False)

            # Forward
            with torch.cuda.amp.autocast(amp):
                pred = model(imgs)  # forward
                loss, loss_items = compute_loss(pred, targets.to(device))  # loss scaled by batch_size
                if RANK != -1:
                    loss *= WORLD_SIZE  # gradient averaged between devices in DDP mode
                if opt.quad:
                    loss *= 4.

            # Backward
            scaler.scale(loss).backward()

            # Optimize - https://pytorch.org/docs/master/notes/amp_examples.html
            if ni - last_opt_step >= accumulate:
                scaler.unscale_(optimizer)  # unscale gradients
                torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=10.0)  # clip gradients
                scaler.step(optimizer)  # optimizer.step
                scaler.update()
                optimizer.zero_grad()
                if ema:
                    ema.update(model)
                last_opt_step = ni

            # Log
            if RANK in {-1, 0}:
                mloss = (mloss * i + loss_items) / (i + 1)  # update mean losses
                mem = f'{torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0:.3g}G'  # (GB)
                pbar.set_description(('%11s' * 2 + '%11.4g' * 5) %
                                     (f'{epoch}/{epochs - 1}', mem, *mloss, targets.shape[0], imgs.shape[-1]))
                callbacks.run('on_train_batch_end', model, ni, imgs, targets, paths, list(mloss))
                if callbacks.stop_training:
                    return
            # end batch ------------------------------------------------------------------------------------------------

        # Scheduler
        lr = [x['lr'] for x in optimizer.param_groups]  # for loggers
        scheduler.step()

        if RANK in {-1, 0}:
            # mAP
            callbacks.run('on_train_epoch_end', epoch=epoch)
            ema.update_attr(model, include=['yaml', 'nc', 'hyp', 'names', 'stride', 'class_weights'])
            final_epoch = (epoch + 1 == epochs) or stopper.possible_stop
            if not noval or final_epoch:  # Calculate mAP
                results, maps, _ = validate.run(data_dict,
                                                batch_size=batch_size // WORLD_SIZE * 2,
                                                imgsz=imgsz,
                                                half=amp,
                                                model=ema.ema,
                                                single_cls=single_cls,
                                                dataloader=val_loader,
                                                save_dir=save_dir,
                                                plots=False,
                                                callbacks=callbacks,
                                                compute_loss=compute_loss)

            # Update best mAP
            fi = fitness(np.array(results).reshape(1, -1))  # weighted combination of [P, R, mAP@.5, mAP@.5-.95]
            stop = stopper(epoch=epoch, fitness=fi)  # early stop check
            if fi > best_fitness:
                best_fitness = fi
            log_vals = list(mloss) + list(results) + lr
            callbacks.run('on_fit_epoch_end', log_vals, epoch, best_fitness, fi)

            # Save model
            if (not nosave) or (final_epoch and not evolve):  # if save
                ckpt = {
                    'epoch': epoch,
                    'best_fitness': best_fitness,
                    'model': deepcopy(de_parallel(model)).half(),
                    'ema': deepcopy(ema.ema).half(),
                    'updates': ema.updates,
                    'optimizer': optimizer.state_dict(),
                    'opt': vars(opt),
                    'git': GIT_INFO,  # {remote, branch, commit} if a git repo
                    'date': datetime.now().isoformat()}

                # Save last, best and delete
                torch.save(ckpt, last)
                if best_fitness == fi:
                    torch.save(ckpt, best)
                if opt.save_period > 0 and epoch % opt.save_period == 0:
                    torch.save(ckpt, w / f'epoch{epoch}.pt')
                del ckpt
                callbacks.run('on_model_save', last, epoch, final_epoch, best_fitness, fi)

        # EarlyStopping
        if RANK != -1:  # if DDP training
            broadcast_list = [stop if RANK == 0 else None]
            dist.broadcast_object_list(broadcast_list, 0)  # broadcast 'stop' to all ranks
            if RANK != 0:
                stop = broadcast_list[0]
        if stop:
            break  # must break all DDP ranks

        # end epoch ----------------------------------------------------------------------------------------------------
    # end training -----------------------------------------------------------------------------------------------------
    if RANK in {-1, 0}:
        LOGGER.info(f'\n{epoch - start_epoch + 1} epochs completed in {(time.time() - t0) / 3600:.3f} hours.')
        for f in last, best:
            if f.exists():
                strip_optimizer(f)  # strip optimizers
                if f is best:
                    LOGGER.info(f'\nValidating {f}...')
                    results, _, _ = validate.run(
                        data_dict,
                        batch_size=batch_size // WORLD_SIZE * 2,
                        imgsz=imgsz,
                        model=attempt_load(f, device).half(),
                        iou_thres=0.65 if is_coco else 0.60,  # best pycocotools at iou 0.65
                        single_cls=single_cls,
                        dataloader=val_loader,
                        save_dir=save_dir,
                        save_json=is_coco,
                        verbose=True,
                        plots=plots,
                        callbacks=callbacks,
                        compute_loss=compute_loss)  # val best model with plots
                    if is_coco:
                        callbacks.run('on_fit_epoch_end', list(mloss) + list(results) + lr, epoch, best_fitness, fi)

        callbacks.run('on_train_end', last, best, epoch, results)

    torch.cuda.empty_cache()
    return results

def parse_opt(known=False):
    parser = argparse.ArgumentParser()
    parser.add_argument('--weights', type=str, default=ROOT / 'yolov5s.pt', help='initial weights path')
    parser.add_argument('--cfg', type=str, default='', help='model.yaml path')
    parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='dataset.yaml path')
    parser.add_argument('--hyp', type=str, default=ROOT / 'data/hyps/hyp.scratch-low.yaml', help='hyperparameters path')
    parser.add_argument('--epochs', type=int, default=100, help='total training epochs')
    parser.add_argument('--batch-size', type=int, default=16, help='total batch size for all GPUs, -1 for autobatch')
    parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='train, val image size (pixels)')
    parser.add_argument('--rect', action='store_true', help='rectangular training')
    parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training')
    parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
    parser.add_argument('--noval', action='store_true', help='only validate final epoch')
    parser.add_argument('--noautoanchor', action='store_true', help='disable AutoAnchor')
    parser.add_argument('--noplots', action='store_true', help='save no plot files')
    parser.add_argument('--evolve', type=int, nargs='?', const=300, help='evolve hyperparameters for x generations')
    parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
    parser.add_argument('--cache', type=str, nargs='?', const='ram', help='image --cache ram/disk')
    parser.add_argument('--image-weights', action='store_true', help='use weighted image selection for training')
    parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
    parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%')
    parser.add_argument('--single-cls', action='store_true', help='train multi-class data as single-class')
    parser.add_argument('--optimizer', type=str, choices=['SGD', 'Adam', 'AdamW'], default='SGD', help='optimizer')
    parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode')
    parser.add_argument('--workers', type=int, default=8, help='max dataloader workers (per RANK in DDP mode)')
    parser.add_argument('--project', default=ROOT / 'runs/train', help='save to project/name')
    parser.add_argument('--name', default='exp', help='save to project/name')
    parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
    parser.add_argument('--quad', action='store_true', help='quad dataloader')
    parser.add_argument('--cos-lr', action='store_true', help='cosine LR scheduler')
    parser.add_argument('--label-smoothing', type=float, default=0.0, help='Label smoothing epsilon')
    parser.add_argument('--patience', type=int, default=100, help='EarlyStopping patience (epochs without improvement)')
    parser.add_argument('--freeze', nargs='+', type=int, default=[0], help='Freeze layers: backbone=10, first3=0 1 2')
    parser.add_argument('--save-period', type=int, default=-1, help='Save checkpoint every x epochs (disabled if < 1)')
    parser.add_argument('--seed', type=int, default=0, help='Global training seed')
    parser.add_argument('--local_rank', type=int, default=-1, help='Automatic DDP Multi-GPU argument, do not modify')
    parser.add_argument('--target-prune-rate', default=0.5, type=float, help='Target pruning rate')
    # Logger arguments
    parser.add_argument('--entity', default=None, help='Entity')
    parser.add_argument('--upload_dataset', nargs='?', const=True, default=False, help='Upload data, "val" option')
    parser.add_argument('--bbox_interval', type=int, default=-1, help='Set bounding-box image logging interval')
    parser.add_argument('--artifact_alias', type=str, default='latest', help='Version of dataset artifact to use')

    return parser.parse_known_args()[0] if known else parser.parse_args()

def main(opt, callbacks=Callbacks()):
    # Checks
    if RANK in {-1, 0}:
        print_args(vars(opt))
        check_git_status()
        check_requirements(ROOT / 'requirements.txt')

    # Resume (from specified or most recent last.pt)
    if opt.resume and not check_comet_resume(opt) and not opt.evolve:
        last = Path(check_file(opt.resume) if isinstance(opt.resume, str) else get_latest_run())
        opt_yaml = last.parent.parent / 'opt.yaml'  # train options yaml
        opt_data = opt.data  # original dataset
        if opt_yaml.is_file():
            with open(opt_yaml, errors='ignore') as f:
                d = yaml.safe_load(f)
        else:
            d = torch.load(last, map_location='cpu')['opt']
        opt = argparse.Namespace(**d)  # replace
        opt.cfg, opt.weights, opt.resume = '', str(last), True  # reinstate
        if is_url(opt_data):
            opt.data = check_file(opt_data)  # avoid HUB resume auth timeout
    else:
        opt.data, opt.cfg, opt.hyp, opt.weights, opt.project = \
            check_file(opt.data), check_yaml(opt.cfg), check_yaml(opt.hyp), str(opt.weights), str(opt.project)  # checks
        assert len(opt.cfg) or len(opt.weights), 'either --cfg or --weights must be specified'
        if opt.evolve:
            if opt.project == str(ROOT / 'runs/train'):  # if default project name, rename to runs/evolve
                opt.project = str(ROOT / 'runs/evolve')
            opt.exist_ok, opt.resume = opt.resume, False  # pass resume to exist_ok and disable resume
        if opt.name == 'cfg':
            opt.name = Path(opt.cfg).stem  # use model.yaml as name
        opt.save_dir = str(increment_path(Path(opt.project) / opt.name, exist_ok=opt.exist_ok))

    # DDP mode
    device = select_device(opt.device, batch_size=opt.batch_size)
    if LOCAL_RANK != -1:
        msg = 'is not compatible with YOLOv5 Multi-GPU DDP training'
        assert not opt.image_weights, f'--image-weights {msg}'
        assert not opt.evolve, f'--evolve {msg}'
        assert opt.batch_size != -1, f'AutoBatch with --batch-size -1 {msg}, please pass a valid --batch-size'
        assert opt.batch_size % WORLD_SIZE == 0, f'--batch-size {opt.batch_size} must be multiple of WORLD_SIZE'
        assert torch.cuda.device_count() > LOCAL_RANK, 'insufficient CUDA devices for DDP command'
        torch.cuda.set_device(LOCAL_RANK)
        device = torch.device('cuda', LOCAL_RANK)
        dist.init_process_group(backend='nccl' if dist.is_nccl_available() else 'gloo')

    # Train
    if not opt.evolve:
        train(opt.hyp, opt, device, callbacks)

    # Evolve hyperparameters (optional)
    else:
        # Hyperparameter evolution metadata (mutation scale 0-1, lower_limit, upper_limit)
        meta = {
            'lr0': (1, 1e-5, 1e-1),  # initial learning rate (SGD=1E-2, Adam=1E-3)
            'lrf': (1, 0.01, 1.0),  # final OneCycleLR learning rate (lr0 * lrf)
            'momentum': (0.3, 0.6, 0.98),  # SGD momentum/Adam beta1
            'weight_decay': (1, 0.0, 0.001),  # optimizer weight decay
            'warmup_epochs': (1, 0.0, 5.0),  # warmup epochs (fractions ok)
            'warmup_momentum': (1, 0.0, 0.95),  # warmup initial momentum
            'warmup_bias_lr': (1, 0.0, 0.2),  # warmup initial bias lr
            'box': (1, 0.02, 0.2),  # box loss gain
            'cls': (1, 0.2, 4.0),  # cls loss gain
            'cls_pw': (1, 0.5, 2.0),  # cls BCELoss positive_weight
            'obj': (1, 0.2, 4.0),  # obj loss gain (scale with pixels)
            'obj_pw': (1, 0.5, 2.0),  # obj BCELoss positive_weight
            'iou_t': (0, 0.1, 0.7),  # IoU training threshold
            'anchor_t': (1, 2.0, 8.0),  # anchor-multiple threshold
            'anchors': (2, 2.0, 10.0),  # anchors per output grid (0 to ignore)
            'fl_gamma': (0, 0.0, 2.0),  # focal loss gamma (efficientDet default gamma=1.5)
            'hsv_h': (1, 0.0, 0.1),  # image HSV-Hue augmentation (fraction)
            'hsv_s': (1, 0.0, 0.9),  # image HSV-Saturation augmentation (fraction)
            'hsv_v': (1, 0.0, 0.9),  # image HSV-Value augmentation (fraction)
            'degrees': (1, 0.0, 45.0),  # image rotation (+/- deg)
            'translate': (1, 0.0, 0.9),  # image translation (+/- fraction)
            'scale': (1, 0.0, 0.9),  # image scale (+/- gain)
            'shear': (1, 0.0, 10.0),  # image shear (+/- deg)
            'perspective': (0, 0.0, 0.001),  # image perspective (+/- fraction), range 0-0.001
            'flipud': (1, 0.0, 1.0),  # image flip up-down (probability)
            'fliplr': (0, 0.0, 1.0),  # image flip left-right (probability)
            'mosaic': (1, 0.0, 1.0),  # image mixup (probability)
            'mixup': (1, 0.0, 1.0),  # image mixup (probability)
            'copy_paste': (1, 0.0, 1.0)}  # segment copy-paste (probability)

        with open(opt.hyp, errors='ignore') as f:
            hyp = yaml.safe_load(f)  # load hyps dict
            if 'anchors' not in hyp:  # anchors commented in hyp.yaml
                hyp['anchors'] = 3
        if opt.noautoanchor:
            del hyp['anchors'], meta['anchors']
        opt.noval, opt.nosave, save_dir = True, True, Path(opt.save_dir)  # only val/save final epoch
        # ei = [isinstance(x, (int, float)) for x in hyp.values()]  # evolvable indices
        evolve_yaml, evolve_csv = save_dir / 'hyp_evolve.yaml', save_dir / 'evolve.csv'
        if opt.bucket:
            # download evolve.csv if exists
            subprocess.run([
                'gsutil',
                'cp',
                f'gs://{opt.bucket}/evolve.csv',
                str(evolve_csv), ])

        for _ in range(opt.evolve):  # generations to evolve
            if evolve_csv.exists():  # if evolve.csv exists: select best hyps and mutate
                # Select parent(s)
                parent = 'single'  # parent selection method: 'single' or 'weighted'
                x = np.loadtxt(evolve_csv, ndmin=2, delimiter=',', skiprows=1)
                n = min(5, len(x))  # number of previous results to consider
                x = x[np.argsort(-fitness(x))][:n]  # top n mutations
                w = fitness(x) - fitness(x).min() + 1E-6  # weights (sum > 0)
                if parent == 'single' or len(x) == 1:
                    # x = x[random.randint(0, n - 1)]  # random selection
                    x = x[random.choices(range(n), weights=w)[0]]  # weighted selection
                elif parent == 'weighted':
                    x = (x * w.reshape(n, 1)).sum(0) / w.sum()  # weighted combination

                # Mutate
                mp, s = 0.8, 0.2  # mutation probability, sigma
                npr = np.random
                npr.seed(int(time.time()))
                g = np.array([meta[k][0] for k in hyp.keys()])  # gains 0-1
                ng = len(meta)
                v = np.ones(ng)
                while all(v == 1):  # mutate until a change occurs (prevent duplicates)
                    v = (g * (npr.random(ng) < mp) * npr.randn(ng) * npr.random() * s + 1).clip(0.3, 3.0)
                for i, k in enumerate(hyp.keys()):  # plt.hist(v.ravel(), 300)
                    hyp[k] = float(x[i + 7] * v[i])  # mutate

            # Constrain to limits
            for k, v in meta.items():
                hyp[k] = max(hyp[k], v[1])  # lower limit
                hyp[k] = min(hyp[k], v[2])  # upper limit
                hyp[k] = round(hyp[k], 5)  # significant digits

            # Train mutation
            results = train(hyp.copy(), opt, device, callbacks)
            callbacks = Callbacks()
            # Write mutation results
            keys = ('metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/mAP_0.5:0.95', 'val/box_loss',
                    'val/obj_loss', 'val/cls_loss')
            print_mutation(keys, results, hyp.copy(), save_dir, opt.bucket)

        # Plot results
        plot_evolve(evolve_csv)
        LOGGER.info(f'Hyperparameter evolution finished {opt.evolve} generations\n'
                    f"Results saved to {colorstr('bold', save_dir)}\n"
                    f'Usage example: $ python train.py --hyp {evolve_yaml}')

def run(**kwargs):
    # Usage: import train; train.run(data='coco128.yaml', imgsz=320, weights='yolov5m.pt')
    opt = parse_opt(True)
    for k, v in kwargs.items():
        setattr(opt, k, v)
    main(opt)
    return opt

if __name__ == '__main__':
    opt = parse_opt()
    main(opt)

I want to implement breakpoint continuation of training in your code, but there is a problem that the model structure does not match the shape of the weights after pruning. I would like to ask how to solve it?