from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
tokenizer = AutoTokenizer.from_pretrained("./T5_Paraphrase_Paws", use_fast=False)
model = AutoModelForSeq2SeqLM.from_pretrained("./T5_Paraphrase_Paws")
sentence = "This is something which i cannot understand at all"
text = "paraphrase: " + sentence + " </s>"
encoding = tokenizer.encode_plus(text,pad_to_max_length=True, return_tensors="pt")
input_ids, attention_masks = encoding["input_ids"].to("cuda"), encoding["attention_mask"].to("cuda")
outputs = model.generate(
input_ids=input_ids, attention_mask=attention_masks,
max_length=256,
do_sample=True,
top_k=200,
top_p=0.95,
early_stopping=True,
num_return_sequences=5
)
for output in outputs:
line = tokenizer.decode(output, skip_special_tokens=True,clean_up_tokenization_spaces=True)
print(line)
Error on Collab:
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-21-c0b69f8e2f6a> in <module>()
1 from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
2
----> 3 tokenizer = AutoTokenizer.from_pretrained("./T5_Paraphrase_Paws", use_fast=False)
4 model = AutoModelForSeq2SeqLM.from_pretrained("./T5_Paraphrase_Paws")
5
4 frames
/usr/local/lib/python3.6/dist-packages/transformers/tokenization_utils_fast.py in __init__(self, *args, **kwargs)
94 else:
95 raise ValueError(
---> 96 "Couldn't instantiate the backend tokenizer from one of: "
97 "(1) a `tokenizers` library serialization file, "
98 "(2) a slow tokenizer instance to convert or "
ValueError: Couldn't instantiate the backend tokenizer from one of: (1) a `tokenizers` library serialization file, (2) a slow tokenizer instance to convert or (3) an equivalent slow tokenizer class to instantiate and convert. You need to have sentencepiece installed to convert a slow tokenizer to a fast one.
Solution tried but unsuccessful: set use_fast to False
Python code:
Error on Collab:
Solution tried but unsuccessful: set use_fast to False