Open rzoun opened 5 hours ago
remove it and do numpy==1.26.3 If that wasn't the issue it is the different version of other modules , check requirement's file for tested versions.
Thanks so much for the fast reply! That did get me further. I ended up with a different error though. Then I tried installing all dependencies with: pip install -r requirements.txt
But the error remained. It says: NameError: name 'is_torch_npu_available' is not defined. Did you mean: 'is_torch_xla_available'?
I searched for solutions for that. Solved it using info in: https://github.com/VectorSpaceLab/OmniGen/issues/73
It works now, thanks!
Doing a clean install:
But when running 'python app.py' I get RuntimeError: Numpy is not available. Even though I can import numpy and see with numpy.version.version that I have version 2.1.2 is installed.
Full output: (omnigen) D:\OmniGen>python app.py
A module that was compiled using NumPy 1.x cannot be run in NumPy 2.1.2 as it may crash. To support both 1.x and 2.x versions of NumPy, modules must be compiled with NumPy 2.0. Some module may need to rebuild instead e.g. with 'pybind11>=2.12'.
If you are a user of the module, the easiest solution will be to downgrade to 'numpy<2' or try to upgrade the affected module. We expect that some modules will need time to support NumPy 2.
Traceback (most recent call last): File "D:\OmniGen\app.py", line 7, in
from OmniGen import OmniGenPipeline
File "D:\OmniGen\OmniGen__init.py", line 1, in
from .model import OmniGen
File "D:\OmniGen\OmniGen\model.py", line 10, in
from timm.models.vision_transformer import PatchEmbed, Attention, Mlp
File "C:\Users\Rikkert\AppData\Local\Programs\Python\Python311\Lib\site-packages\timm__init.py", line 2, in
from .layers import is_scriptable, is_exportable, set_scriptable, set_exportable
File "C:\Users\Rikkert\AppData\Local\Programs\Python\Python311\Lib\site-packages\timm\layers__init.py", line 8, in
from .classifier import create_classifier, ClassifierHead, NormMlpClassifierHead, ClNormMlpClassifierHead
File "C:\Users\Rikkert\AppData\Local\Programs\Python\Python311\Lib\site-packages\timm\layers\classifier.py", line 15, in
from .create_norm import get_norm_layer
File "C:\Users\Rikkert\AppData\Local\Programs\Python\Python311\Lib\site-packages\timm\layers\create_norm.py", line 14, in
from torchvision.ops.misc import FrozenBatchNorm2d
File "C:\Users\Rikkert\AppData\Local\Programs\Python\Python311\Lib\site-packages\torchvision__init.py", line 6, in
from torchvision import _meta_registrations, datasets, io, models, ops, transforms, utils
File "C:\Users\Rikkert\AppData\Local\Programs\Python\Python311\Lib\site-packages\torchvision\models\ init.py", line 2, in
from .convnext import *
File "C:\Users\Rikkert\AppData\Local\Programs\Python\Python311\Lib\site-packages\torchvision\models\convnext.py", line 8, in
from ..ops.misc import Conv2dNormActivation, Permute
File "C:\Users\Rikkert\AppData\Local\Programs\Python\Python311\Lib\site-packages\torchvision\ops\ init__.py", line 23, in
from .poolers import MultiScaleRoIAlign
File "C:\Users\Rikkert\AppData\Local\Programs\Python\Python311\Lib\site-packages\torchvision\ops\poolers.py", line 10, in
from .roi_align import roi_align
File "C:\Users\Rikkert\AppData\Local\Programs\Python\Python311\Lib\site-packages\torchvision\ops\roi_align.py", line 4, in
import torch._dynamo
File "C:\Users\Rikkert\AppData\Local\Programs\Python\Python311\Lib\site-packages\torch_dynamo\ init__.py", line 64, in
torch.manual_seed = disable(torch.manual_seed)
File "C:\Users\Rikkert\AppData\Local\Programs\Python\Python311\Lib\site-packages\torch_dynamo\decorators.py", line 50, in disable
return DisableContext()(fn)
File "C:\Users\Rikkert\AppData\Local\Programs\Python\Python311\Lib\site-packages\torch_dynamo\eval_frame.py", line 410, in call__
(filename is None or trace_rules.check(fn))
File "C:\Users\Rikkert\AppData\Local\Programs\Python\Python311\Lib\site-packages\torch_dynamo\trace_rules.py", line 3378, in check
return check_verbose(obj, is_inlined_call).skipped
File "C:\Users\Rikkert\AppData\Local\Programs\Python\Python311\Lib\site-packages\torch_dynamo\trace_rules.py", line 3361, in check_verbose
rule = torch._dynamo.trace_rules.lookup_inner(
File "C:\Users\Rikkert\AppData\Local\Programs\Python\Python311\Lib\site-packages\torch_dynamo\trace_rules.py", line 3442, in lookup_inner
rule = get_torch_obj_rule_map().get(obj, None)
File "C:\Users\Rikkert\AppData\Local\Programs\Python\Python311\Lib\site-packages\torch_dynamo\trace_rules.py", line 2782, in get_torch_obj_rule_map
obj = load_object(k)
File "C:\Users\Rikkert\AppData\Local\Programs\Python\Python311\Lib\site-packages\torch_dynamo\trace_rules.py", line 2811, in load_object
val = _load_obj_from_str(x[0])
File "C:\Users\Rikkert\AppData\Local\Programs\Python\Python311\Lib\site-packages\torch_dynamo\trace_rules.py", line 2795, in _load_obj_from_str
return getattr(importlib.import_module(module), obj_name)
File "C:\Users\Rikkert\AppData\Local\Programs\Python\Python311\Lib\importlib\ init.py", line 126, in import_module
return _bootstrap._gcd_import(name[level:], package, level)
File "C:\Users\Rikkert\AppData\Local\Programs\Python\Python311\Lib\site-packages\torch\nested_internal\nested_tensor.py", line 417, in
values=torch.randn(3, 3, device="meta"),
C:\Users\Rikkert\AppData\Local\Programs\Python\Python311\Lib\site-packages\torch\nested_internal\nested_tensor.py:417: UserWarning: Failed to initialize NumPy: _ARRAY_API not found (Triggered internally at ..\torch\csrc\utils\tensor_numpy.cpp:84.)
values=torch.randn(3, 3, device="meta"),
Fetching 10 files: 100%|███████████████████████████████████████████████████████████████████████| 10/10 [00:00<?, ?it/s]
Traceback (most recent call last):
File "D:\OmniGen\app.py", line 9, in
pipe = OmniGenPipeline.from_pretrained(
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "D:\OmniGen\OmniGen\pipeline.py", line 82, in from_pretrained
model = OmniGen.from_pretrained(model_name)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "D:\OmniGen\OmniGen\model.py", line 197, in from_pretrained
model = cls(config)
^^^^^^^^^^^
File "D:\OmniGen\OmniGen\model.py", line 180, in init__
self.register_buffer("pos_embed", torch.from_numpy(pos_embed).float().unsqueeze(0), persistent=True)
^^^^^^^^^^^^^^^^^^^^^^^^^^^
RuntimeError: Numpy is not available