Closed shuyilinn closed 5 months ago
Hi @lydialin1212 Thank you for reporting this to us! It looks to be an issue when handling the sigmoid activation function. @shizhouxing @C-lister Can you take a look using the examples from @lydialin1212 ?
This issue has been fixed in the latest release.
Describe the bug When I use alpha-beta-crown for evaluation, an cuda error shows, here is the log " Traceback (most recent call last): File "/scratch/shuyilin/alpha-beta-CROWN/complete_verifier/abcrown.py", line 612, in
abcrown.main()
File "/scratch/shuyilin/alpha-beta-CROWN/complete_verifier/abcrown.py", line 591, in main
verified_status = self.complete_verifier(
File "/scratch/shuyilin/alpha-beta-CROWN/complete_verifier/abcrown.py", line 416, in complete_verifier
l, nodes, ret = self.bab(
File "/scratch/shuyilin/alpha-beta-CROWN/complete_verifier/abcrown.py", line 235, in bab
result = input_bab_parallel(
File "/scratch/shuyilin/alpha-beta-CROWN/complete_verifier/input_split/batch_branch_and_bound.py", line 182, in input_bab_parallel
global_lb, ret = net.build(
File "/scratch/shuyilin/alpha-beta-CROWN/complete_verifier/beta_CROWN_solver.py", line 455, in build
lb, ub, aux_reference_bounds = self.net.init_alpha(
File "/scratch/shuyilin/alpha-beta-CROWN/complete_verifier/auto_LiRPA/optimized_bounds.py", line 766, in init_alpha
l, u = self.compute_bounds(
File "/scratch/shuyilin/alpha-beta-CROWN/complete_verifier/auto_LiRPA/bound_general.py", line 1206, in compute_bounds
return self._compute_bounds_main(C=C,
File "/scratch/shuyilin/alpha-beta-CROWN/complete_verifier/auto_LiRPA/bound_general.py", line 1303, in _compute_bounds_main
self.check_prior_bounds(final)
File "/scratch/shuyilin/alpha-beta-CROWN/complete_verifier/auto_LiRPA/bound_general.py", line 800, in check_prior_bounds
self.check_prior_bounds(n)
File "/scratch/shuyilin/alpha-beta-CROWN/complete_verifier/auto_LiRPA/bound_general.py", line 800, in check_prior_bounds
self.check_prior_bounds(n)
File "/scratch/shuyilin/alpha-beta-CROWN/complete_verifier/auto_LiRPA/bound_general.py", line 800, in check_prior_bounds
self.check_prior_bounds(n)
[Previous line repeated 1 more time]
File "/scratch/shuyilin/alpha-beta-CROWN/complete_verifier/auto_LiRPA/bound_general.py", line 804, in check_prior_bounds
self.compute_intermediate_bounds(
File "/scratch/shuyilin/alpha-beta-CROWN/complete_verifier/auto_LiRPA/bound_general.py", line 910, in compute_intermediate_bounds
node.lower, node.upper = self.backward_general(
File "/scratch/shuyilin/alpha-beta-CROWN/complete_verifier/auto_LiRPA/backward_bound.py", line 256, in backward_general
A, lower_b, upper_b = l.bound_backward(
File "/scratch/shuyilin/alpha-beta-CROWN/complete_verifier/auto_LiRPA/operators/nonlinear.py", line 512, in bound_backward
As, lbias, ubias = super().bound_backward(
File "/scratch/shuyilin/alpha-beta-CROWN/complete_verifier/auto_LiRPA/operators/activation_base.py", line 248, in bound_backward
As, lbias, ubias = super().bound_backward(
File "/scratch/shuyilin/alpha-beta-CROWN/complete_verifier/auto_LiRPA/operators/activation_base.py", line 66, in bound_backward
self.bound_relax(x, init=True)
File "/scratch/shuyilin/alpha-beta-CROWN/complete_verifier/auto_LiRPA/operators/nonlinear.py", line 231, in bound_relax
self.bound_relax_impl_sigmoid(lb, ub, self.act_func, self.d_act_func)
File "/scratch/shuyilin/alpha-beta-CROWN/complete_verifier/auto_LiRPA/operators/nonlinear.py", line 174, in bound_relax_impl_sigmoid
self.add_linear_relaxation(
File "/scratch/shuyilin/alpha-beta-CROWN/complete_verifier/auto_LiRPA/operators/activation_base.py", line 46, in add_linear_relaxation
w_out[..., mask] = (k[..., mask].to(w_out) if isinstance(k, Tensor)
RuntimeError: CUDA error: device-side assert triggered
CUDA kernel errors might be asynchronously reported at some other API call,so the stacktrace below might be incorrect.
For debugging consider passing CUDA_LAUNCH_BLOCKING=1.
"
I have several onnx files for one model (the only difference of them is the weights and bias). But some onnx files meet this problem and some not.
To Reproduce
System configuration:
Thanks in advance for any ideas and suggestions.
reproduce.zip