Open tywei08 opened 3 weeks ago
I got a same error.
I found it strange that the embedding_dim
and the output size of fc2
were different, so I checked the logs and noticed that the AP10k model was not using ViT but seemed to be defined as shown below. I modified this and ran it, but it seems that TopDownMultiHeadMOE is not defined within the repository, which is causing me trouble.
model = dict(
type='TopDownMultiHeadMOE',
pretrained=
'/datasets/users/xuyufei1/code/MAE-root/MAE-root/output/pretrain_base_patch16_224_Epoch1600/checkpoint-1599.pth',
backbone=dict(
type='ViTMOE',
img_size=(256, 192),
patch_size=16,
embed_dim=768,
depth=12,
num_heads=12,
ratio=1,
use_checkpoint=False,
mlp_ratio=4,
qkv_bias=True,
use_abs_pos_emb=False,
use_rel_pos_bias=False,
drop_path_rate=0.3,
out_indices=[11],
stages=4,
last_norm=True,
num_tasks=6,
mode='concat1',
part_features=192),
keypoint_head=dict(
type='TopdownHeatmapSimpleHead',
in_channels=768,
num_deconv_layers=2,
num_deconv_filters=(256, 256),
num_deconv_kernels=(4, 4),
extra=dict(final_conv_kernel=1),
out_channels=17,
loss_keypoint=dict(type='JointsMSELoss', use_target_weight=True)),
associate_keypoint_head=[
dict(
type='TopdownHeatmapSimpleHead',
in_channels=768,
num_deconv_layers=2,
num_deconv_filters=(256, 256),
num_deconv_kernels=(4, 4),
extra=dict(final_conv_kernel=1),
out_channels=14,
loss_keypoint=dict(type='JointsMSELoss', use_target_weight=True)),
dict(
type='TopdownHeatmapSimpleHead',
in_channels=768,
num_deconv_layers=2,
num_deconv_filters=(256, 256),
num_deconv_kernels=(4, 4),
extra=dict(final_conv_kernel=1),
out_channels=16,
loss_keypoint=dict(type='JointsMSELoss', use_target_weight=True)),
dict(
type='TopdownHeatmapSimpleHead',
in_channels=768,
num_deconv_layers=2,
num_deconv_filters=(256, 256),
num_deconv_kernels=(4, 4),
extra=dict(final_conv_kernel=1),
out_channels=17,
loss_keypoint=dict(type='JointsMSELoss', use_target_weight=True)),
dict(
type='TopdownHeatmapSimpleHead',
in_channels=768,
num_deconv_layers=2,
num_deconv_filters=(256, 256),
num_deconv_kernels=(4, 4),
extra=dict(final_conv_kernel=1),
out_channels=17,
loss_keypoint=dict(type='JointsMSELoss', use_target_weight=True)),
dict(
type='TopdownHeatmapSimpleHead',
in_channels=768,
num_deconv_layers=2,
num_deconv_filters=(256, 256),
num_deconv_kernels=(4, 4),
extra=dict(final_conv_kernel=1),
out_channels=133,
loss_keypoint=dict(type='JointsMSELoss', use_target_weight=True))
],
train_cfg=dict(),
test_cfg=dict(
flip_test=True,
post_process='default',
shift_heatmap=False,
target_type='GaussianHeatmap',
modulate_kernel=11,
use_udp=True))
Hi, I am trying to replicate the evaluation results for AP10k test set using Vitpose+-Base as reported in the paper and the repo. The configuration file I used is
configs/animal/2d_kpt_sview_rgb_img/topdown_heatmap/ap10k/ViTPose_base_ap10k_256x192.py
, and the checkpoint file was downloaded from the onedrive foldervitpose+_base.pth
. And I ran the commandbash tools/dist_test.sh configs/animal/2d_kpt_sview_rgb_img/topdown_heatmap/ap10k/ViTPose_base_ap10k_256x192.py checkpoints/vitpose+_base.pth 4
I got 0 AP.