Closed ruqianl closed 6 years ago
Hi Ruqian, There is no need to train a model. I am not familiar with the array but I assume that the exome.hmm gives better performance than default hhall.hmm file. -Kai
On Thu, Jan 4, 2018 at 1:12 AM, Rachael-rq notifications@github.com wrote:
Hi Dr. Wang,
I noticed in the help message of the 'detect_cnv.pl', training optimized .hmm model parameters is not recommended. But I guess it would be better to train the model when the data is from exome arrays ?
I have downloaded the HMM file for Illumina HumanCoreExome_v12-A beadchip constrcuted by Szatkiewicz et al from your website. and had run the detection operation with both hmm files (i.e. hhall.hmm and exome.hmm).
With exome.hmm, more CNVs were detected.
I have noticed the only difference in two files lie in the B1 block which is the mean LRR and sd.
The data I'm analysing were from InfiniumCoreExome-24v1-1_A, so I'm not sure whether I should re-train the HMM model or just use the exome.hmm as below is good enough ?
Thank you very much
Best regards, Ruqian
hhall.hmm M=6 N=6 A: 0.936719716 0.006332139 0.048770575 0.000000001 0.008177573 0.000000001 0.000801036 0.949230924 0.048770575 0.000000001 0.001168245 0.000029225 0.000004595 0.000047431 0.999912387 0.000000001 0.000034971 0.000000621 0.000049998 0.000049998 0.000049998 0.999750015 0.000049998 0.000049998 0.000916738 0.001359036 0.048770575 0.000000001 0.948953653 0.000000002 0.000000001 0.000000001 0.027257213 0.000000001 0.000000004 0.972742785 B: 0.950000 0.000001 0.050000 0.000001 0.000001 0.000001 0.000001 0.950000 0.050000 0.000001 0.000001 0.000001 0.000001 0.000001 0.999995 0.000001 0.000001 0.000001 0.000001 0.000001 0.050000 0.950000 0.000001 0.000001 0.000001 0.000001 0.050000 0.000001 0.950000 0.000001 0.000001 0.000001 0.050000 0.000001 0.000001 0.950000 pi: 0.000001 0.000500 0.999000 0.000001 0.000500 0.000001
B1_mean: -3.527211 -0.664184 0.000000 100.000000 0.395621 0.678345 B1_sd: 1.329152 0.284338 0.159645 0.211396 0.209089 0.191579 B1_uf: 0.010000 B2_mean: 0.000000 0.250000 0.333333 0.500000 0.500000 B2_sd: 0.016372 0.042099 0.045126 0.034982 0.304243 B2_uf: 0.010000 B3_mean: -2.051407 -0.572210 0.000000 0.000000 0.361669 0.626711 B3_sd: 2.132843 0.382025 0.184001 0.200297 0.253551 0.353183 B3_uf: 0.010000
exome.hmm
M=6 N=6 A: 0.936719716 0.006332139 0.048770575 0.000000001 0.008177573 0.000000001 0.000801036 0.949230924 0.048770575 0.000000001 0.001168245 0.000029225 0.000004595 0.000047431 0.999912387 0.000000001 0.000034971 0.000000621 0.000049998 0.000049998 0.000049998 0.999750015 0.000049998 0.000049998 0.000916738 0.001359036 0.048770575 0.000000001 0.948953653 0.000000002 0.000000001 0.000000001 0.027257213 0.000000001 0.000000004 0.972742785 B: 0.950000 0.000001 0.050000 0.000001 0.000001 0.000001 0.000001 0.950000 0.050000 0.000001 0.000001 0.000001 0.000001 0.000001 0.999995 0.000001 0.000001 0.000001 0.000001 0.000001 0.050000 0.950000 0.000001 0.000001 0.000001 0.000001 0.050000 0.000001 0.950000 0.000001 0.000001 0.000001 0.050000 0.000001 0.000001 0.950000 pi: 0.000001 0.000500 0.999000 0.000001 0.000500 0.000001
B1_mean: -2.051407 -0.5 0.000000 100.000000 0.32 0.62 B1_sd: 1.329152 0.17 0.159645 0.211396 0.25 0.30 B1_uf: 0.010000 B2_mean: 0.000000 0.250000 0.333333 0.500000 0.500000 B2_sd: 0.016372 0.042099 0.045126 0.034982 0.304243 B2_uf: 0.010000 B3_mean: -2.051407 -0.572210 0.000000 0.000000 0.361669 0.626711 B3_sd: 2.132843 0.382025 0.184001 0.200297 0.253551 0.353183 B3_uf: 0.010000
— You are receiving this because you are subscribed to this thread. Reply to this email directly, view it on GitHub https://github.com/WGLab/PennCNV/issues/21, or mute the thread https://github.com/notifications/unsubscribe-auth/AFptuHdT5QGg7k0LNWU00P-yIhqJ0diKks5tHGvrgaJpZM4RSm6G .
Hi Dr. Wang,
I noticed in the help message of the 'detect_cnv.pl', training optimized .hmm model parameters is not recommended. But I guess it would be better to train the model when the data is from exome arrays ?
I have downloaded the HMM file for Illumina HumanCoreExome_v12-A beadchip constrcuted by Szatkiewicz et al from your website. and had run the detection operation with both hmm files (i.e. hhall.hmm and exome.hmm).
With exome.hmm, more CNVs were detected.
I have noticed the only difference in two files lie in the B1 block which is the mean LRR and sd.
The data I'm analysing were from InfiniumCoreExome-24v1-1_A, so I'm not sure whether I should re-train the HMM model or just use the exome.hmm as below is good enough ?
Thank you very much
Best regards, Ruqian
hhall.hmm M=6 N=6 A: 0.936719716 0.006332139 0.048770575 0.000000001 0.008177573 0.000000001 0.000801036 0.949230924 0.048770575 0.000000001 0.001168245 0.000029225 0.000004595 0.000047431 0.999912387 0.000000001 0.000034971 0.000000621 0.000049998 0.000049998 0.000049998 0.999750015 0.000049998 0.000049998 0.000916738 0.001359036 0.048770575 0.000000001 0.948953653 0.000000002 0.000000001 0.000000001 0.027257213 0.000000001 0.000000004 0.972742785 B: 0.950000 0.000001 0.050000 0.000001 0.000001 0.000001 0.000001 0.950000 0.050000 0.000001 0.000001 0.000001 0.000001 0.000001 0.999995 0.000001 0.000001 0.000001 0.000001 0.000001 0.050000 0.950000 0.000001 0.000001 0.000001 0.000001 0.050000 0.000001 0.950000 0.000001 0.000001 0.000001 0.050000 0.000001 0.000001 0.950000 pi: 0.000001 0.000500 0.999000 0.000001 0.000500 0.000001 B1_mean: -3.527211 -0.664184 0.000000 100.000000 0.395621 0.678345 B1_sd: 1.329152 0.284338 0.159645 0.211396 0.209089 0.191579 B1_uf: 0.010000 B2_mean: 0.000000 0.250000 0.333333 0.500000 0.500000 B2_sd: 0.016372 0.042099 0.045126 0.034982 0.304243 B2_uf: 0.010000 B3_mean: -2.051407 -0.572210 0.000000 0.000000 0.361669 0.626711 B3_sd: 2.132843 0.382025 0.184001 0.200297 0.253551 0.353183 B3_uf: 0.010000
exome.hmm
M=6 N=6 A: 0.936719716 0.006332139 0.048770575 0.000000001 0.008177573 0.000000001 0.000801036 0.949230924 0.048770575 0.000000001 0.001168245 0.000029225 0.000004595 0.000047431 0.999912387 0.000000001 0.000034971 0.000000621 0.000049998 0.000049998 0.000049998 0.999750015 0.000049998 0.000049998 0.000916738 0.001359036 0.048770575 0.000000001 0.948953653 0.000000002 0.000000001 0.000000001 0.027257213 0.000000001 0.000000004 0.972742785 B: 0.950000 0.000001 0.050000 0.000001 0.000001 0.000001 0.000001 0.950000 0.050000 0.000001 0.000001 0.000001 0.000001 0.000001 0.999995 0.000001 0.000001 0.000001 0.000001 0.000001 0.050000 0.950000 0.000001 0.000001 0.000001 0.000001 0.050000 0.000001 0.950000 0.000001 0.000001 0.000001 0.050000 0.000001 0.000001 0.950000 pi: 0.000001 0.000500 0.999000 0.000001 0.000500 0.000001 B1_mean: -2.051407 -0.5 0.000000 100.000000 0.32 0.62 B1_sd: 1.329152 0.17 0.159645 0.211396 0.25 0.30 B1_uf: 0.010000 B2_mean: 0.000000 0.250000 0.333333 0.500000 0.500000 B2_sd: 0.016372 0.042099 0.045126 0.034982 0.304243 B2_uf: 0.010000 B3_mean: -2.051407 -0.572210 0.000000 0.000000 0.361669 0.626711 B3_sd: 2.132843 0.382025 0.184001 0.200297 0.253551 0.353183 B3_uf: 0.010000