Watts-Lab / gps_epidemic_modeling

Repository for experiments related to epidemic models, calibration and inference.
MIT License
1 stars 0 forks source link

Documentation for Numpy and Tensor implementations of Epidemic Models #3

Open GolanTrev opened 12 months ago

GolanTrev commented 12 months ago

def run_model(params: Dict[str, Any], path: str, pop_geoid: pd.DataFrame, index_dict: Dict[Any, Any], net_type: str, date_interval: List[str], model: str = 'SEIR', num_sims: int = 36, initial_cond: Optional[pd.DataFrame] = None) -> pd.DataFrame: """ Runs a simulation model for disease spread over a given population and time interval.

Parameters:
params (Dict[str, Any]): Configuration parameters for the model.
path (str): File path or directory path for data access.
pop_geoid (pd.DataFrame): Geographical identifiers for the population.
index_dict (Dict[Any, Any]): Dictionary mapping indices for network construction.
net_type (str): Type of network used in the model.
date_interval (List[str]): List of dates over which the model is run.
model (str): Type of model to run, defaults to 'SEIR'.
num_sims (int): Number of simulations to run, defaults to 36.
initial_cond (Optional[pd.DataFrame]): Initial conditions for the model, optional.

Returns:
pd.DataFrame: A DataFrame containing the results of the simulations.
"""
GolanTrev commented 12 months ago

This is one of the main deliverables we show Duncan. The actual asset.