WeBankFinTech / Qualitis

Qualitis is a one-stop data quality management platform that supports quality verification, notification, and management for various datasource. It is used to solve various data quality problems caused by data processing. https://github.com/WeBankFinTech/Qualitis
Apache License 2.0
707 stars 304 forks source link

使用1.0,Linkis1.5执行规则后,显示执行成功,返回任务结果为空 #189

Closed hiparabbit closed 5 months ago

hiparabbit commented 6 months ago

Describe the bug 使用1.0,Linkis1.5执行规则后,显示执行成功,返回结果为空

To Reproduce

image

Expected behavior 返回执行结果

Screenshots

image

Additional context scala> val rule011_dev_replacedSchemas = rule011_dev_schemas.map(s => s.replaceAll("[()]", "")).toList scala> val statisticDFOfrule011_dev = NullVerificationOfrule011_dev.toDF(rule011_devreplacedSchemas: ) scala> spark.sqlContext.setConf("hive.exec.dynamic.partition", "true") scala> spark.sqlContext.setConf("hive.exec.dynamic.partition.mode", "nonstrict") scala> spark.conf.set("spark.sql.sources.partitionOverwriteMode","dynamic") 2024-05-08 07:11:07.138 WARN [Linkis-Default-Scheduler-Thread-14] org.apache.spark.sql.execution.CacheManager 69 logWarning [JobId-17] - Asked to cache already cached data. scala> if (spark.catalog.tableExists("hadoop_ind.dev_rule01")) { val partition_list_hadoop_ind_dev_rule01 = spark.sql("select qualitis_partition_key from hadoop_ind.dev_rule01 where (qualitis_partition_key < 20240501)").map(f=>f.getString(0)).collect.toList partition_list_hadoop_ind_dev_rule01.foreach(f => spark.sql("alter table hadoop_ind.dev_rule01 drop if exists partition (qualitis_partition_key=" + f + ")")) statisticDFOfrule011_dev.withColumn("qualitis_partition_key", lit("20240508")).withColumn("qualitis_partition_key_env", lit("1_dev")).write.mode("overwrite").insertInto("hadoop_ind.dev_rule01") } else { statisticDFOfrule011_dev.withColumn("qualitis_partition_key", lit("20240508")).withColumn("qualitis_partition_key_env", lit("1_dev")).write.mode("append").partitionBy("qualitis_partition_key", "qualitis_partition_key_env").format("hive").saveAsTable("hadoop_ind.dev_rule01"); } scala> statisticDFOfrule011_dev.selectExpr("count() as value", "'QUALITIS20240508151103708_454731' as application_id", "'Long' as result_type", "'12' as rule_id", "'' as version", "'-1' as rule_metric_id", "'-1' as run_date", "'1_dev' as env_name", "'2024-05-08 15:11:03' as create_time").write.mode(org.apache.spark.sql.SaveMode.Append).jdbc("jdbc:mysql://rm-uf66mtp56ee9w61g98o.mysql.rds.aliyuncs.com:3306/qualitis?createDatabaseIfNotExist=true&useUnicode=true&characterEncoding=utf-8", "qualitis_application_task_result", prop); scala> spark.catalog.uncacheTable("common_table_1_dev") scala> val linkisVar=123 2024-05-08 07:11:09.691 WARN [Linkis-Default-Scheduler-Thread-14] org.apache.hadoop.hive.conf.HiveConf 4122 initialize [JobId-17] - HiveConf of name hive.internal.ss.authz.settings.applied.marker does not exist 2024-05-08 07:11:09.691 WARN [Linkis-Default-Scheduler-Thread-14] org.apache.hadoop.hive.conf.HiveConf 4122 initialize [JobId-17] - HiveConf of name hive.stats.jdbc.timeout does not exist 2024-05-08 07:11:09.692 WARN [Linkis-Default-Scheduler-Thread-14] org.apache.hadoop.hive.conf.HiveConf 4122 initialize [JobId-17] - HiveConf of name hive.stats.retries.wait does not exist 2024-05-08 07:11:12.838 WARN [load-dynamic-partitions-0] org.apache.hadoop.hive.conf.HiveConf 4122 initialize [JobId-] - HiveConf of name hive.internal.ss.authz.settings.applied.marker does not exist 2024-05-08 07:11:12.838 WARN [load-dynamic-partitions-0] org.apache.hadoop.hive.conf.HiveConf 4122 initialize [JobId-] - HiveConf of name hive.stats.jdbc.timeout does not exist 2024-05-08 07:11:12.839 WARN [load-dynamic-partitions-0] org.apache.hadoop.hive.conf.HiveConf 4122 initialize [JobId-] - HiveConf of name hive.stats.retries.wait does not exist 2024-05-08 15:11:15.011 INFO Congratulations! Your job : Qualitis_hadoop_spark_9 executed with status succeed and 0 results. 2024-05-08 15:11:15.011 INFO Task creation time(任务创建时间): 2024-05-08 15:11:04, Task scheduling time(任务调度时间): 2024-05-08 15:11:04, Task start time(任务开始时间): 2024-05-08 15:11:04, Mission end time(任务结束时间): 2024-05-08 15:11:15 2024-05-08 15:11:15.011 INFO Task submit to Orchestrator time:2024-05-08 15:11:04, Task request EngineConn time:2024-05-08 15:11:04, Task submit to EngineConn time:2024-05-08 15:11:05 2024-05-08 15:11:15.011 INFO Your mission(您的任务) 17 The total time spent is(总耗时时间为): 11.3 s 2024-05-08 15:11:15.011 INFO Congratulations. Your job completed with status Success.

Tangjiafeng commented 5 months ago

一般是引擎侧任务未进入执行状态,所以看不到日志。比如进入执行中之前,可能是排队中,资源申请中,这个阶段是没有日志的。如果确定是执行中的任务没有日志,可以关闭引擎后重试,或者闲置一段时间引擎会自动关闭。