Closed lovedoubledan closed 2 years ago
""" author: Wu 2021/1/24 source: https://github.com/Weifeng-Chen/DL_tools/blob/main/coco2yolo.py COCO 格式的数据集转化为 YOLO 格式的数据集,源代码采取遍历方式,太慢, 这里改进了一下时间复杂度,从O(nm)改为O(n+m),但是牺牲了一些内存占用 --json_path 输入的json文件路径 --save_path 保存的文件夹名字,默认为当前目录下的labels。 """ import os import json from tqdm import tqdm import argparse parser = argparse.ArgumentParser() parser.add_argument('--json_path', default='./instances_val2017.json',type=str, help="input: coco format(json)") parser.add_argument('--save_path', default='./labels', type=str, help="specify where to save the output dir of labels") arg = parser.parse_args() def convert(size, box): dw = 1. / (size[0]) dh = 1. / (size[1]) x = box[0] + box[2] / 2.0 y = box[1] + box[3] / 2.0 w = box[2] h = box[3] x = x * dw w = w * dw y = y * dh h = h * dh return (x, y, w, h) if __name__ == '__main__': json_file = arg.json_path # COCO Object Instance 类型的标注 ana_txt_save_path = arg.save_path # 保存的路径 data = json.load(open(json_file, 'r')) if not os.path.exists(ana_txt_save_path): os.makedirs(ana_txt_save_path) id_map = {} # coco数据集的id不连续!重新映射一下再输出! for i, category in enumerate(data['categories']): id_map[category['id']] = i # 通过事先建表来降低时间复杂度 max_id = 0 for img in data['images']: max_id = max(max_id, img['id']) # 注意这里不能写作 [[]]*(max_id+1),否则列表内的空列表共享地址 img_ann_dict = [[] for i in range(max_id+1)] for i, ann in enumerate(data['annotations']): img_ann_dict[ann['image_id']].append(i) for img in tqdm(data['images']): filename = img["file_name"] img_width = img["width"] img_height = img["height"] img_id = img["id"] head, tail = os.path.splitext(filename) ana_txt_name = head + ".txt" # 对应的txt名字,与jpg一致 f_txt = open(os.path.join(ana_txt_save_path, ana_txt_name), 'w') '''for ann in data['annotations']: if ann['image_id'] == img_id: box = convert((img_width, img_height), ann["bbox"]) f_txt.write("%s %s %s %s %s\n" % (id_map[ann["category_id"]], box[0], box[1], box[2], box[3]))''' # 这里可以直接查表而无需重复遍历 for ann_id in img_ann_dict[img_id]: ann = data['annotations'][ann_id] box = convert((img_width, img_height), ann["bbox"]) f_txt.write("%s %s %s %s %s\n" % (id_map[ann["category_id"]], box[0], box[1], box[2], box[3])) f_txt.close()
【自动恢复】来信已收到,我将尽快回复你!