WongKinYiu / ScaledYOLOv4

Scaled-YOLOv4: Scaling Cross Stage Partial Network
GNU General Public License v3.0
2.02k stars 574 forks source link

training yolov4-tiny on yolov4-csp branch results in lower AP than darknet version #41

Open e96031413 opened 4 years ago

e96031413 commented 4 years ago

這幾天嘗試透過yolov4-csp的branch進行COCO 2017 dataset訓練,為了讓yolov4-tiny能過正常訓練,我在parse_config.py中的supported新增了['resize','group_id'],讓yolov4-tiny.cfg中的這兩個參數得以被讀取到,其餘程式碼沒有任何更動。

結果發現訓練出來的yolov4-tiny,AP表現低於您在darknet上所測出來的yolov4-tiny,如下表所示:

 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.158
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.299
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.150
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.052
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.212
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.248
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.169
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.285
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.313
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.097
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.421
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.482

使用的指令是:

python -m torch.distributed.launch --nproc_per_node 4 train.py --device 0,1,2,3 --batch-size 64 --data coco.yaml --cfg yolov4-tiny.cfg --weights 'yolov4-tiny.conv.29' --name yolov4-tiny --sync-bn

之前曾經嘗試在ultralytics/yolov3版本底下訓練YOLOv3-tiny過,測試出來的AP結果還蠻正常的,與darknet版本差不多。

我自己有在猜測會不會是使用多顆GPU進行訓練的關係,不過也不是很確定就是了

我也有讀了yolov4-csp branch中的models.py、layers.py、test.py,發現與ultralytics/yolov3的差異不是很大,不知道您針對這個現象有沒有什麼想法呢?

WongKinYiu commented 4 years ago

group_id 沒增加code的話結構會變 訓練yolov4-tiny的程式可以參考這裡

WongKinYiu commented 4 years ago

或者試試在這行後面暫時加上 balance = [0.4, 1.0] if np == 2 else balance

e96031413 commented 4 years ago

好的,謝謝您的回覆

我兩個方法都嘗試看看,後續有結果再回來通知

e96031413 commented 4 years ago

11/30更新:

在ScaledYOLOv4的這行後面加上 balance = [0.4, 1.0] if np == 2 else balance,進行YOLOv4-Tiny訓練後,所測試出來的結果

指令如下:

python -m torch.distributed.launch --nproc_per_node 4 train.py --device 0,1,2,3 --batch-size 64 --data coco.yaml --cfg yolov4-tiny.cfg --weights 'yolov4-tiny.conv.29' --name yolov4-tiny --sync-bn
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.193
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.357
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.182
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.070
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.260
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.287
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.187
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.318
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.353
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.134
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.473
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.517

目前來測試PyTorch_YOLOv4的u3_preview版本看看

12/1更新:

修改了PyTorch_YOLOv4的u3_preview當中,models.py第355行(支援pre-trained weight)、train.py第67行(支援32倍數的解析度)、dataset.py第262及267行(處理dataset相對路徑的問題)

models.py line 355

def load_darknet_weights(self, weights, cutoff=-1):
    # Parses and loads the weights stored in 'weights'

    # Establish cutoffs (load layers between 0 and cutoff. if cutoff = -1 all are loaded)
    file = Path(weights).name
    if file == 'darknet53.conv.74':
        cutoff = 75
    elif file == 'yolov3-tiny.conv.15':
        cutoff = 15
    elif file == 'yolov4-tiny.conv.29':
        cutoff = 29
    .
    .
    .
    .

train.py line 67

    gs = 32  # (pixels) grid size # 原本gs = 64改成32
    assert math.fmod(imgsz_min, gs) == 0, '--img-size %g must be a %g-multiple' % (imgsz_min, gs)

utils/dataset.py line 262 and 267

class LoadImagesAndLabels(Dataset):  # for training/testing
    def __init__(self, path, img_size=416, batch_size=16, augment=False, hyp=None, rect=False, image_weights=False,
                 cache_images=False, single_cls=False):
        path = str(Path(path))  # os-agnostic
        parent = str(Path(path).parent) + os.sep                              # add this
        assert os.path.isfile(path), 'File not found %s. See %s' % (path, help_url)
        with open(path, 'r') as f:
            self.img_files = [x.replace('/', os.sep) for x in f.read().splitlines()  # os-agnostic
                              if os.path.splitext(x)[-1].lower() in img_formats]
            self.img_files = [x.replace('./', parent) if x.startswith('./') else x for x in self.img_files]    # add this

透過u3_preview版本經由以下指令訓練300個Epochs並進行testing得到的AP結果:

CUDA_VISIBLE_DEVICES=0 python train.py --data coco2017.data --cfg yolov4-tiny.cfg --weights 'yolov4-tiny.conv.29' --name yolov4-tiny --img 416 416 416
python test.py --data coco2017.data --cfg yolov4-tiny.cfg --weights weights/best.pt --img 416 --batch-size 8

darknet版本測出是40.2

 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.221
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.394
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.219
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.077
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.263
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.340
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.217
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.368
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.400
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.151
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.484
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.612
kanybekasanbekov commented 3 years ago

這幾天嘗試透過yolov4-csp的branch進行COCO 2017 dataset訓練,為了讓yolov4-tiny能過正常訓練,我在parse_config.py中的supported新增了['resize','group_id'],讓yolov4-tiny.cfg中的這兩個參數得以被讀取到,其餘程式碼沒有任何更動。

結果發現訓練出來的yolov4-tiny,AP表現低於您在darknet上所測出來的yolov4-tiny,如下表所示:

 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.158
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.299
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.150
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.052
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.212
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.248
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.169
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.285
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.313
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.097
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.421
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.482

使用的指令是:

python -m torch.distributed.launch --nproc_per_node 4 train.py --device 0,1,2,3 --batch-size 64 --data coco.yaml --cfg yolov4-tiny.cfg --weights 'yolov4-tiny.conv.29' --name yolov4-tiny --sync-bn

之前曾經嘗試在ultralytics/yolov3版本底下訓練YOLOv3-tiny過,測試出來的AP結果還蠻正常的,與darknet版本差不多。

我自己有在猜測會不會是使用多顆GPU進行訓練的關係,不過也不是很確定就是了

我也有讀了yolov4-csp branch中的models.py、layers.py、test.py,發現與ultralytics/yolov3的差異不是很大,不知道您針對這個現象有沒有什麼想法呢?

Hi @e96031413 How did you make yolov4-csp branch support ['resize','group_id']? Could you please help me with that?

e96031413 commented 3 years ago

Hi @kanybekasanbekov,

Just add 'resize' and 'group_id' in yolov4-csp/utils/parse_config.py

supported = ['type', 'batch_normalize', 'filters', 'size', 'stride', 'pad', 'activation', 'layers', 'groups',
             'from', 'mask', 'anchors', 'classes', 'num', 'jitter', 'ignore_thresh', 'truth_thresh', 'random',
             'stride_x', 'stride_y', 'weights_type', 'weights_normalization', 'scale_x_y', 'beta_nms','nms_kind',
             'iou_loss', 'iou_normalizer', 'cls_normalizer', 'iou_thresh', 'atoms', 'na', 'nc', 'resize', 'group_id']