Open Woolfrey opened 6 months ago
We could solve the trajectory tracking control problem using QP:
\begin{align} \min_\mathbf{\ddot{q}} \| \mathbf{\ddot{q}}_\mathrm{r} - \mathbf{\ddot{q}}\|^2_\mathrm{M} \\ \begin{bmatrix} \mathbf{\ddot{q}}_\mathrm{min} \\ \boldsymbol{\tau}_\mathrm{min} \end{bmatrix} \le \begin{bmatrix} \mathbf{\ddot{q}} \\ \mathbf{M\ddot{q}} \end{bmatrix} \le \begin{bmatrix} \mathbf{\ddot{q}}_\mathrm{max} \\ \boldsymbol{\tau}_\mathrm{max} \end{bmatrix} \end{align}
So that the resulting joint acceleration satisfied both kinematic and dynamic limits.
We could solve the trajectory tracking control problem using QP:
So that the resulting joint acceleration satisfied both kinematic and dynamic limits.