GradDFT is a JAX-based library enabling the differentiable design and experimentation of exchange-correlation functionals using machine learning techniques.
Apache License 2.0
79
stars
7
forks
source link
Unifying notation between jitted and non-jitted orbital optimizers #73
Currently, the
make_orbital_optimizer
uses the argumentmax_cycles
https://github.com/XanaduAI/GradDFT/blob/73c62872cc47dc1761fe322a565f6f64bc49259b/grad_dft/evaluate.py#L596 whereasmake_jitted_orbital_optimizer
uses the argumentcycles
. https://github.com/XanaduAI/GradDFT/blob/73c62872cc47dc1761fe322a565f6f64bc49259b/grad_dft/evaluate.py#L782 This causes a small mismatch in the results of some examples.