XanaduAI / QHack2021

Official repo for QHack—the quantum machine learning hackathon
https://qhack.ai
122 stars 94 forks source link

[ENTRY] QC-AAN for HEP #64

Open TDHTTTT opened 3 years ago

TDHTTTT commented 3 years ago

Team Name:

QC@UCI

Project Description:

To enhance the Generative Adversarial Networks (GAN) used in the High Energy Physics (HEP) community for fast event simulation with Quantum Circuit Born Machine (QCBM), a versatile and efficient quantum generative model, to sample the prior (latent space). The quantum enhanced architecture, Quantum Circuit Associative Adversarial Network (QC-AAN), was shown previously to not only have similar performance as DCGAN but also have practical quantum advantages such as greater training stability on MNIST [1]. Instabilities of the training caused by diverging gradient and vanishing gradient are a major practical concern, especially for the HEP community*[2]. So, if a QC-AAN can make the training for GANs more robust, we would expect it to have practical value for the HEP community. We plan to build upon CaloGAN [3], a popular architecture to generate HEP detector responses and use vanilla CaloGAN as a baseline for comparison.

* To overcome the training instability, HEP community often uses Wasserstein GANs. Due to time constraints, we plan to investigate a quantum enhanced Wassertein GANs in the future.

Procedure

Metrics

Presentation:

For a non-techinical overview, please refer to this slides or this time-stamped pdf version of the slides.

Source code:

QC@UCI/QHack

Reference

[1] M. S. Rudolph, N. B. Toussaint, A. Katabarwa, S. Johri, B. Peropadre, and A. Perdomo-Ortiz, Generation of High-Resolution Handwritten Digits with an Ion-Trap Quantum Computer, (2020).

[2] A. Butter and T. Plehn, Generative Networks for LHC Events, ArXiv:2008.08558 [Hep-Ph] (2020).

[3] M. Paganini, L. de Oliveira, and B. Nachman, CaloGAN: Simulating 3D High Energy Particle Showers in Multi-Layer Electromagnetic Calorimeters with Generative Adversarial Networks, Phys. Rev. D 97, 014021 (2018).

[4] Nachman, Benjamin; de Oliveira, Luke; Paganini, Michela (2017), “Electromagnetic Calorimeter Shower Images”, Mendeley Data, V1, doi: 10.17632/pvn3xc3wy5.1

co9olguy commented 3 years ago

Thanks for the submission! We hope you have enjoyed participating in QHack :smiley:

We will be assessing the entries and contacting the winners separately. Winners will be publicly announced sometime in the next month.

We will also be freezing the GitHub repo as we sort through the submitted projects, so you will not be able to update this submission.

TDHTTTT commented 3 years ago

Thanks! We totally enjoyed this awesome event! Thanks again to QHack team, AWS, Floq and other great people!