Open RicardoGaGu opened 3 years ago
Thanks for the submission! We hope you have enjoyed participating in QHack :smiley:
We will be assessing the entries and contacting the winners separately. Winners will be publicly announced sometime in the next month.
We will also be freezing the GitHub repo as we sort through the submitted projects, so you will not be able to update this submission.
Team Name:
CCH
Project Description:
The emerging field of hybrid quantum-classical algorithms joins CPUs and QPUs to speed-up/improve specific calculations within a classical algorithm. This allows for shorter quantum executions that are less susceptible to the cumulative effects of noise and that run well on today’s devices. This is why we intend to explore the performance of a hybrid convolutional neural network model that incorporates a trainable quantum layer, effectively replacing a convolutional filter, in both quantum simulators and QPU.
Our team proposes to design a trainable quantum convolutional filter in a quantum-classical hybrid neural network, appealing for the NISQ era, inspired by these papers: Hybrid quantum-classical Convolutional Neural Networks [1] and Quanvolutional Neural Networks [2] , but generalizing these previous works to use cloud based QPU.
Here is a list of the expected outcomes/ questions to address of this project:
Presentation:
https://github.com/KetpuntoG/QFilters
Source code:
https://github.com/KetpuntoG/QFilters