Hi, Im follow ur README and try to generate some regularization pics, and also use the sd-v1-4-full-ema.ckpt, but error happen
/usr/bin/python /hy-tmp/dreambooth/Dreambooth-Stable-Diffusion-main/txt2img.py --ddim_eta 0.0 --n_samples 8 --n_iter 50 --scale 10.0 --ddim_steps 50 --ckpt stable-diffusion/sd-v1-4-full-ema.ckpt --prompt a photo of a man
Loading model from stable-diffusion/sd-v1-4-full-ema.ckpt
LatentDiffusion: Running in eps-prediction mode
DiffusionWrapper has 872.30 M params.
making attention of type 'vanilla' with 512 in_channels
Working with z of shape (1, 4, 32, 32) = 4096 dimensions.
making attention of type 'vanilla' with 512 in_channels
Traceback (most recent call last):
File "/hy-tmp/dreambooth/Dreambooth-Stable-Diffusion-main/txt2img.py", line 119, in <module>
model = load_model_from_config(config, opt.ckpt_path) # TODO: check path
File "/hy-tmp/dreambooth/Dreambooth-Stable-Diffusion-main/txt2img.py", line 19, in load_model_from_config
m, u = model.load_state_dict(sd, strict=False)
File "/usr/local/lib/python3.8/dist-packages/torch/nn/modules/module.py", line 1482, in load_state_dict
raise RuntimeError('Error(s) in loading state_dict for {}:\n\t{}'.format(
RuntimeError: Error(s) in loading state_dict for LatentDiffusion:
size mismatch for model.diffusion_model.input_blocks.1.1.transformer_blocks.0.attn2.to_k.weight: copying a param with shape torch.Size([320, 768]) from checkpoint, the shape in current model is torch.Size([320, 1280]).
size mismatch for model.diffusion_model.input_blocks.1.1.transformer_blocks.0.attn2.to_v.weight: copying a param with shape torch.Size([320, 768]) from checkpoint, the shape in current model is torch.Size([320, 1280]).
size mismatch for model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_k.weight: copying a param with shape torch.Size([320, 768]) from checkpoint, the shape in current model is torch.Size([320, 1280]).
size mismatch for model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_v.weight: copying a param with shape torch.Size([320, 768]) from checkpoint, the shape in current model is torch.Size([320, 1280]).
size mismatch for model.diffusion_model.input_blocks.4.1.transformer_blocks.0.attn2.to_k.weight: copying a param with shape torch.Size([640, 768]) from checkpoint, the shape in current model is torch.Size([640, 1280]).
size mismatch for model.diffusion_model.input_blocks.4.1.transformer_blocks.0.attn2.to_v.weight: copying a param with shape torch.Size([640, 768]) from checkpoint, the shape in current model is torch.Size([640, 1280]).
size mismatch for model.diffusion_model.input_blocks.5.1.transformer_blocks.0.attn2.to_k.weight: copying a param with shape torch.Size([640, 768]) from checkpoint, the shape in current model is torch.Size([640, 1280]).
size mismatch for model.diffusion_model.input_blocks.5.1.transformer_blocks.0.attn2.to_v.weight: copying a param with shape torch.Size([640, 768]) from checkpoint, the shape in current model is torch.Size([640, 1280]).
size mismatch for model.diffusion_model.input_blocks.7.1.transformer_blocks.0.attn2.to_k.weight: copying a param with shape torch.Size([1280, 768]) from checkpoint, the shape in current model is torch.Size([1280, 1280]).
size mismatch for model.diffusion_model.input_blocks.7.1.transformer_blocks.0.attn2.to_v.weight: copying a param with shape torch.Size([1280, 768]) from checkpoint, the shape in current model is torch.Size([1280, 1280]).
size mismatch for model.diffusion_model.input_blocks.8.1.transformer_blocks.0.attn2.to_k.weight: copying a param with shape torch.Size([1280, 768]) from checkpoint, the shape in current model is torch.Size([1280, 1280]).
size mismatch for model.diffusion_model.input_blocks.8.1.transformer_blocks.0.attn2.to_v.weight: copying a param with shape torch.Size([1280, 768]) from checkpoint, the shape in current model is torch.Size([1280, 1280]).
size mismatch for model.diffusion_model.middle_block.1.transformer_blocks.0.attn2.to_k.weight: copying a param with shape torch.Size([1280, 768]) from checkpoint, the shape in current model is torch.Size([1280, 1280]).
size mismatch for model.diffusion_model.middle_block.1.transformer_blocks.0.attn2.to_v.weight: copying a param with shape torch.Size([1280, 768]) from checkpoint, the shape in current model is torch.Size([1280, 1280]).
size mismatch for model.diffusion_model.output_blocks.3.1.transformer_blocks.0.attn2.to_k.weight: copying a param with shape torch.Size([1280, 768]) from checkpoint, the shape in current model is torch.Size([1280, 1280]).
size mismatch for model.diffusion_model.output_blocks.3.1.transformer_blocks.0.attn2.to_v.weight: copying a param with shape torch.Size([1280, 768]) from checkpoint, the shape in current model is torch.Size([1280, 1280]).
size mismatch for model.diffusion_model.output_blocks.4.1.transformer_blocks.0.attn2.to_k.weight: copying a param with shape torch.Size([1280, 768]) from checkpoint, the shape in current model is torch.Size([1280, 1280]).
size mismatch for model.diffusion_model.output_blocks.4.1.transformer_blocks.0.attn2.to_v.weight: copying a param with shape torch.Size([1280, 768]) from checkpoint, the shape in current model is torch.Size([1280, 1280]).
size mismatch for model.diffusion_model.output_blocks.5.1.transformer_blocks.0.attn2.to_k.weight: copying a param with shape torch.Size([1280, 768]) from checkpoint, the shape in current model is torch.Size([1280, 1280]).
size mismatch for model.diffusion_model.output_blocks.5.1.transformer_blocks.0.attn2.to_v.weight: copying a param with shape torch.Size([1280, 768]) from checkpoint, the shape in current model is torch.Size([1280, 1280]).
size mismatch for model.diffusion_model.output_blocks.6.1.transformer_blocks.0.attn2.to_k.weight: copying a param with shape torch.Size([640, 768]) from checkpoint, the shape in current model is torch.Size([640, 1280]).
size mismatch for model.diffusion_model.output_blocks.6.1.transformer_blocks.0.attn2.to_v.weight: copying a param with shape torch.Size([640, 768]) from checkpoint, the shape in current model is torch.Size([640, 1280]).
size mismatch for model.diffusion_model.output_blocks.7.1.transformer_blocks.0.attn2.to_k.weight: copying a param with shape torch.Size([640, 768]) from checkpoint, the shape in current model is torch.Size([640, 1280]).
size mismatch for model.diffusion_model.output_blocks.7.1.transformer_blocks.0.attn2.to_v.weight: copying a param with shape torch.Size([640, 768]) from checkpoint, the shape in current model is torch.Size([640, 1280]).
size mismatch for model.diffusion_model.output_blocks.8.1.transformer_blocks.0.attn2.to_k.weight: copying a param with shape torch.Size([640, 768]) from checkpoint, the shape in current model is torch.Size([640, 1280]).
size mismatch for model.diffusion_model.output_blocks.8.1.transformer_blocks.0.attn2.to_v.weight: copying a param with shape torch.Size([640, 768]) from checkpoint, the shape in current model is torch.Size([640, 1280]).
size mismatch for model.diffusion_model.output_blocks.9.1.transformer_blocks.0.attn2.to_k.weight: copying a param with shape torch.Size([320, 768]) from checkpoint, the shape in current model is torch.Size([320, 1280]).
size mismatch for model.diffusion_model.output_blocks.9.1.transformer_blocks.0.attn2.to_v.weight: copying a param with shape torch.Size([320, 768]) from checkpoint, the shape in current model is torch.Size([320, 1280]).
size mismatch for model.diffusion_model.output_blocks.10.1.transformer_blocks.0.attn2.to_k.weight: copying a param with shape torch.Size([320, 768]) from checkpoint, the shape in current model is torch.Size([320, 1280]).
size mismatch for model.diffusion_model.output_blocks.10.1.transformer_blocks.0.attn2.to_v.weight: copying a param with shape torch.Size([320, 768]) from checkpoint, the shape in current model is torch.Size([320, 1280]).
size mismatch for model.diffusion_model.output_blocks.11.1.transformer_blocks.0.attn2.to_k.weight: copying a param with shape torch.Size([320, 768]) from checkpoint, the shape in current model is torch.Size([320, 1280]).
size mismatch for model.diffusion_model.output_blocks.11.1.transformer_blocks.0.attn2.to_v.weight: copying a param with shape torch.Size([320, 768]) from checkpoint, the shape in current model is torch.Size([320, 1280]).
Process finished with exit code 1
Hi, Im follow ur README and try to generate some regularization pics, and also use the
sd-v1-4-full-ema.ckpt
, but error happenwhy does it happen? should i alter the ckpt?