Open callzhang opened 2 years ago
There's a save_points
function in visualizer, i think we could use that
def save_points(xyz, dir, total_steps):
if xyz.ndim < 3:
xyz = xyz[None, ...]
os.makedirs(dir, exist_ok=True)
for i in range(xyz.shape[0]):
if isinstance(total_steps,str):
filename = 'step-{}-{}.txt'.format(total_steps, i)
else:
filename = 'step-{:04d}-{}.txt'.format(total_steps, i)
filepath = os.path.join(dir, filename)
np.savetxt(filepath, xyz[i, ...].reshape(-1, xyz.shape[-1]), delimiter=";")
Hi! Thanks or asking this question. On top of this question, I have one more question. Does anybody know why saving the first three elements of features concatenated with xyz?
def save_neural_points(self, total_steps, xyz, features, data, save_ref=0):
if features is None:
if torch.is_tensor(xyz):
# xyz = xyz.detach().cpu().numpy()
xyz = xyz.detach().cpu().numpy()
save_points(xyz, self.point_dir, total_steps)
elif features.shape[-1] == 9:
pnt_lst = []
for i in range(0,3):
points = torch.cat([xyz, features[0, ..., i*3:i*3+3] * 255], dim=-1)
if torch.is_tensor(points):
# xyz = xyz.detach().cpu().numpy()
points = points.detach().cpu().numpy()
pnt_lst.append(points)
save_points(np.stack(pnt_lst,axis=0), self.point_dir, total_steps)
else:
points = torch.cat([xyz, features[0, ..., :3] * 255], dim=-1)
if torch.is_tensor(points):
# xyz = xyz.detach().cpu().numpy()
points = points.detach().cpu().numpy()
save_points(points, self.point_dir, total_steps)
Has anyone extracted the point cloud with color info?
Hi,
Is there a way to convert the model to a point cloud representation?
Thanks!
Derek