YanJiaHuan / AI_Tutor

The objective of this project is to develop an intelligent tutor system to assist human to perform the education activities.
1 stars 0 forks source link

update #1

Closed QiaolingChen00 closed 1 year ago

QiaolingChen00 commented 1 year ago

原输入:

"role": "system", "content": "You are a professor in the field of ["+self.key_word+"] who is good at questions asking and answering ,also good at summarizing papers using concise statements"},
                {"role": "assistant", "content": "This is the title, author, link, abstract and introduction of an English document. I need your help to read and answer the following quesions: "+clip_text},
                {"role": "user", "content": """                 
                 1. Mark the title of the paper (with Chinese translation)
                 2. list all the authors' names (use English)
                 3. mark the first author's affiliation (output {} translation only)                 
                 4. mark the keywords of this article (use English)
                 5. 用一个词描述主题是什么?并解释这个词的基本概念。(with Chinese translation)
                 6. 你是一个老师,并且很擅长 presentation,请你根据 5 提出的主题,生成一个 outline (with Chinese translation)
                 7. 你是一个助教,你需要给老师在 6 给出的 outline 讲解这篇文章。(with Chinese translation)
                 Follow the format of the output that follows:                  
                 1. Title: xxx\n\n
                 2. Authors: xxx\n\n
                 3. Affiliation: xxx\n\n                 
                 4. Keywords: xxx\n\n   
                 5. xxx \n\n      
                 6. 老师: \n\n
                    - (1)xxx;\n 
                        - detail: xxx;\n
                    - (2)xxx;\n 
                        - detail: xxx;\n
                    - (3)xxx;\n  
                        - detail: xxx;\n
                    xxx \n\n  
                 7. 助教: \n\n
                    - (1)xxx:
                        - xxx;\n 
                    - (2)xxx:
                        - xxx;\n 
                    - (3)xxx;\n   
                        - xxx \n\n

我们的输入可以是,以一条数据为例:

{
        "instruction": "You are a professor in the field of ["+self.key_word+"] who is good at questions asking and answering ,also good at summarizing papers using concise statements, This is the title, author, link, abstract and introduction of an English document. I need your help to read and answer the following quesions: "+clip_text",
        "input": "Mark the title of the paper (with Chinese translation)",
        "output": "Flexgen generation data"
    },
YanJiaHuan commented 1 year ago

summary_result: "Good Robot!": 面向多步视觉任务的高效强化学习及虚实转移 prompt_token_used: 1847 completion_token_used: 30 total_token_used: 1877 response_time: 4.024 s

YanJiaHuan commented 1 year ago

summary_result:

  1. Title: “Good Robot!”: Efficient Reinforcement Learning for Multi-Step Visual Tasks with Sim to Real Transfer (“好机器人!”:通过仿真转移到现实的高效多步视觉任务强化学习)

             2. Authors: Andrew Hundt, Benjamin Killeen, Nicholas Greene, Hongtao Wu, Heeyeon Kwon, Chris Paxton, and Gregory D. Hager
    
             3. Affiliation: The first author's affiliation: 约翰霍普金斯大学(Johns Hopkins University)
    
             4. Keywords: computer vision, grasping and manipulation, reinforcement learning 
    
             5. Reinforcement learning with sim to real transfer applied to long term multi-step tasks with consideration of progress reversal.
    
             6. 老师:
                - (1) 强化学习在长期多步任务中的应用;
                    - 细节:任务和数据集、以及当前应用中有哪些问题解决了。
                - (2) 基于SPOT框架的模型;
                    - 细节:其中包括了哪些约束,并且与正反馈训练的关系。
                - (3) 仿真转移到现实的转换效率;
                    - 细节:在实验中的表现以及成果。
    
             7. 助教:
                - (1) 此文章介绍了什么内容?
                    - 回答:文章介绍了使用SPOT框架的强化学习模型,该模型可以在长期多步任务中应用,并实现了相对高的转换效率。
                - (2) 如何解决传统强化学习算法存在的问题?
                    - 回答:作者提出了SPOT框架,其中加入了“动作安全区”、“学习危险区域而不探索”以及“优先考虑反向进展的经验”等约束,解决了时间空间复杂度等问题。
                - (3) SPOT框架在现实环境中有哪些优势?
                    - 回答:该框架可以实现直接的仿真转移到真实环境中,无需额外的现实世界微调。

    prompt_token_used: 2234 completion_token_used: 577 total_token_used: 2811