Open aldiak opened 4 years ago
how to modify the following code for Indian Pines? because Pavia University dataset has 9 class and Indian Pines 16.
w=2 num_PC=1 israndom=True randtime = 1
OASpectral_IP = np.zeros((9+2,randtime)) s1s2=1 OASpectral_Pavia1 = 'spec1' time_step = 3
for r in range(0,randtime):
#################Pavia################# dataID=2 data = HyperspectralSamples(dataID=dataID, timestep=time_step, w=w, num_PC=num_PC, israndom=israndom, s1s2=s1s2) X = data[0] X_train = data[1] X_test = data[2] XP = data[3] XP_train = data[4] XP_test = data[5] Y = data[6]-1 Y_train = data[7]-1 Y_test = data[8]-1 batch_size = 128 nb_classes = Y_train.max()+1 nb_epoch = 50 nb_features = X.shape[-1] img_rows, img_cols = XP.shape[1],XP.shape[1] # convert class vectors to binary class matrices y_train = np_utils.to_categorical(Y_train, nb_classes) y_test = np_utils.to_categorical(Y_test, nb_classes) model = LSTM_RS(time_step=time_step,nb_features=nb_features) tic1 = time.clock() histloss=model.fit([X_train], [y_train], nb_epoch=nb_epoch, batch_size=batch_size, verbose=1, shuffle=True) losses = histloss.history toc1 = time.clock() tic2 = time.clock() PredictLabel = model.predict([X_test],verbose=1).argmax(axis=-1) toc2 = time.clock() OA,Kappa,ProducerA = CalAccuracy(PredictLabel,Y_test[:,0]) OASpectral_IP[0:9,r] = ProducerA OASpectral_IP[-2,r] = OA OASpectral_IP[-1,r] = Kappa
how to modify the following code for Indian Pines? because Pavia University dataset has 9 class and Indian Pines 16.
w=2 num_PC=1 israndom=True randtime = 1
OASpectral_IP = np.zeros((9+2,randtime)) s1s2=1 OASpectral_Pavia1 = 'spec1' time_step = 3
for r in range(0,randtime):