Closed Turbinenoli closed 2 years ago
The example does lack sufficient information, I cannot reproduce your issue. But I can build an MPSE
class with the provided information (See the following). Would you mind sending me the dataset by email? I will not distribute this data without your permission. My email is xshuangbin@163.com
> library(MicrobiotaProcess)
> otutab <- read.table("./otu_tab.txt", header = T, row.names = 1)
> otutab
ASV1 ASV2 ASV3 ASV4 ASV5
D1-1 351 133 300 272 139
D1-2 361 205 339 215 179
D1-3 414 236 418 268 245
D1-4 385 210 441 272 295
D1-5 324 165 355 242 196
D1-6 359 179 378 293 185
> taxatab <- read.table("./taxa_tab.txt", header = T, row.names = 1)
> taxatab
Kingdom Phylum Class Order
ASV1 k__Bacteria p__Proteobacteria c__Alphaproteobacteria o__Rhizobiales
ASV2 k__Bacteria p__Proteobacteria c__Alphaproteobacteria o__Rhizobiales
ASV3 k__Bacteria p__Proteobacteria c__Alphaproteobacteria o__Rhizobiales
ASV4 k__Bacteria p__Nitrospirota c__Nitrospiria o__Nitrospirales
ASV5 k__Bacteria p__Proteobacteria c__Alphaproteobacteria o__Rhizobiales
Family Genus
ASV1 f__Xanthobacteraceae g__
ASV2 f__Methyloligellaceae g__
ASV3 f__Methyloligellaceae g__
ASV4 f__Nitrospiraceae g__Nitrospira
ASV5 f__Xanthobacteraceae g__Bradyrhizobium
> sampleda <- read.table("./sample_tab.txt", header = T, row.names = 1)
> sampled
sample_ID location plot run ph
D1-1 D1BCS1 Düdingen BCS 1 6.0
D1-2 D1BCS2 Düdingen BCS 1 5.9
D1-3 D1BCS3 Düdingen BCS 1 5.8
D1-4 D1BBD1 Düdingen BBD 1 5.9
D1-5 D1BBD2 Düdingen BBD 1 5.9
D1-6 D1BBD3 Düdingen BBD 1 5.9
> mpse <- MPSE(assays=list(Abundance=t(otutab)), colData=sampleda)
> mpse
# A MPSE-tibble (MPSE object) abstraction: 30 × 8
# OTU=5 | Samples=6 | Assays=Abundance | Taxanomy=NULL
OTU Sample Abundance sample_ID location plot run ph
<chr> <chr> <int> <chr> <chr> <chr> <int> <dbl>
1 ASV1 D1-1 351 D1BCS1 Düdingen BCS 1 6
2 ASV1 D1-2 361 D1BCS2 Düdingen BCS 1 5.9
3 ASV1 D1-3 414 D1BCS3 Düdingen BCS 1 5.8
4 ASV2 D1-1 133 D1BCS1 Düdingen BCS 1 6
5 ASV2 D1-2 205 D1BCS2 Düdingen BCS 1 5.9
6 ASV2 D1-3 236 D1BCS3 Düdingen BCS 1 5.8
7 ASV3 D1-1 300 D1BCS1 Düdingen BCS 1 6
8 ASV3 D1-2 339 D1BCS2 Düdingen BCS 1 5.9
9 ASV3 D1-3 418 D1BCS3 Düdingen BCS 1 5.8
10 ASV4 D1-1 272 D1BCS1 Düdingen BCS 1 6
# … with 20 more rows
> taxonomy(mpse) <- taxatab
> mpse
# A MPSE-tibble (MPSE object) abstraction: 30 × 14
# OTU=5 | Samples=6 | Assays=Abundance | Taxanomy=Kingdom, Phylum, Class, Order, Family, Genus
OTU Sample Abundance sample_ID location plot run ph Kingdom Phylum
<chr> <chr> <int> <chr> <chr> <chr> <int> <dbl> <chr> <chr>
1 ASV1 D1-1 351 D1BCS1 Düdingen BCS 1 6 k__Bact… p__Prot…
2 ASV1 D1-2 361 D1BCS2 Düdingen BCS 1 5.9 k__Bact… p__Prot…
3 ASV1 D1-3 414 D1BCS3 Düdingen BCS 1 5.8 k__Bact… p__Prot…
4 ASV2 D1-1 133 D1BCS1 Düdingen BCS 1 6 k__Bact… p__Prot…
5 ASV2 D1-2 205 D1BCS2 Düdingen BCS 1 5.9 k__Bact… p__Prot…
6 ASV2 D1-3 236 D1BCS3 Düdingen BCS 1 5.8 k__Bact… p__Prot…
7 ASV3 D1-1 300 D1BCS1 Düdingen BCS 1 6 k__Bact… p__Prot…
8 ASV3 D1-2 339 D1BCS2 Düdingen BCS 1 5.9 k__Bact… p__Prot…
9 ASV3 D1-3 418 D1BCS3 Düdingen BCS 1 5.8 k__Bact… p__Prot…
10 ASV4 D1-1 272 D1BCS1 Düdingen BCS 1 6 k__Bact… p__Nitr…
# … with 20 more rows, and 4 more variables: Class <chr>, Order <chr>,
# Family <chr>, Genus <chr>
By the way, the following is my R session information. And the version of MicrobiotaProcess
is the newest (1.7.5)
> sessioninfo::session_info()
─ Session info ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
setting value
version R version 4.1.1 (2021-08-10)
os Ubuntu 18.04.4 LTS
system x86_64, linux-gnu
ui X11
language (EN)
collate en_US.UTF-8
ctype en_US.UTF-8
tz Asia/Shanghai
date 2022-01-13
─ Packages ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
package * version date lib source
ape 5.6-1 2022-01-07 [1] CRAN (R 4.1.1)
aplot 0.1.2 2022-01-10 [1] CRAN (R 4.1.1)
assertthat 0.2.1 2019-03-21 [1] CRAN (R 4.1.1)
Biobase 2.54.0 2021-10-26 [1] Bioconductor
BiocGenerics 0.40.0 2021-10-26 [1] Bioconductor
BiocManager 1.30.16 2021-06-15 [1] CRAN (R 4.1.1)
Biostrings 2.62.0 2021-10-26 [1] Bioconductor
bitops 1.0-7 2021-04-24 [1] CRAN (R 4.1.1)
cachem 1.0.6 2021-08-19 [1] CRAN (R 4.1.1)
cli 3.1.0 2021-10-27 [1] CRAN (R 4.1.1)
cluster 2.1.2 2021-04-17 [1] CRAN (R 4.1.1)
codetools 0.2-18 2020-11-04 [1] CRAN (R 4.1.1)
coin 1.4-2 2021-10-08 [1] CRAN (R 4.1.1)
colorspace 2.0-2 2021-06-24 [1] CRAN (R 4.1.1)
conflicted * 1.0.4 2019-06-21 [1] CRAN (R 4.1.1)
crayon 1.4.2 2021-10-29 [1] CRAN (R 4.1.1)
DBI 1.1.2 2021-12-20 [1] CRAN (R 4.1.1)
DelayedArray 0.20.0 2021-10-26 [1] Bioconductor
dplyr 1.0.7 2021-06-18 [1] CRAN (R 4.1.1)
ellipsis 0.3.2 2021-04-29 [1] CRAN (R 4.1.1)
fansi 1.0.0 2022-01-10 [1] CRAN (R 4.1.1)
fastmap 1.1.0 2021-01-25 [1] CRAN (R 4.1.1)
foreach 1.5.1 2020-10-15 [1] CRAN (R 4.1.1)
generics 0.1.1 2021-10-25 [1] CRAN (R 4.1.1)
GenomeInfoDb 1.30.0 2021-10-26 [1] Bioconductor
GenomeInfoDbData 1.2.7 2021-10-29 [1] Bioconductor
GenomicRanges 1.46.0 2021-10-26 [1] Bioconductor
ggfun 0.0.4 2021-09-17 [1] CRAN (R 4.1.1)
ggnewscale 0.4.5 2021-01-11 [1] CRAN (R 4.1.1)
ggplot2 3.3.5 2021-06-25 [1] CRAN (R 4.1.1)
ggplotify 0.1.0 2021-09-02 [1] CRAN (R 4.1.1)
ggrepel 0.9.1 2021-01-15 [1] CRAN (R 4.1.1)
ggsignif 0.6.3 2021-09-09 [1] CRAN (R 4.1.1)
ggstar 1.0.3 2021-12-03 [1] CRAN (R 4.1.1)
ggtree 3.3.1 2021-12-31 [1] Bioconductor
ggtreeExtra 1.5.1 2021-11-24 [1] Bioconductor
glue 1.6.0 2021-12-17 [1] CRAN (R 4.1.1)
gridExtra 2.3 2017-09-09 [1] CRAN (R 4.1.1)
gridGraphics 0.5-1 2020-12-13 [1] CRAN (R 4.1.1)
gtable 0.3.0 2019-03-25 [1] CRAN (R 4.1.1)
IRanges 2.28.0 2021-10-26 [1] Bioconductor
iterators 1.0.13 2020-10-15 [1] CRAN (R 4.1.1)
jsonlite 1.7.2 2020-12-09 [1] CRAN (R 4.1.1)
lattice 0.20-45 2021-09-22 [1] CRAN (R 4.1.1)
lazyeval 0.2.2 2019-03-15 [1] CRAN (R 4.1.1)
libcoin 1.0-9 2021-09-27 [1] CRAN (R 4.1.1)
lifecycle 1.0.1 2021-09-24 [1] CRAN (R 4.1.1)
magrittr * 2.0.1 2020-11-17 [1] CRAN (R 4.1.1)
MASS 7.3-54 2021-05-03 [1] CRAN (R 4.1.1)
Matrix 1.3-4 2021-06-01 [1] CRAN (R 4.1.1)
MatrixGenerics 1.6.0 2021-10-26 [1] Bioconductor
matrixStats 0.61.0 2021-09-17 [1] CRAN (R 4.1.1)
mgcv 1.8-38 2021-10-06 [1] CRAN (R 4.1.1)
MicrobiotaProcess * 1.7.5 2021-12-31 [1] Bioconductor
modeltools 0.2-23 2020-03-05 [1] CRAN (R 4.1.1)
multcomp 1.4-17 2021-04-29 [1] CRAN (R 4.1.1)
munsell 0.5.0 2018-06-12 [1] CRAN (R 4.1.1)
mvtnorm 1.1-3 2021-10-08 [1] CRAN (R 4.1.1)
nlme 3.1-153 2021-09-07 [1] CRAN (R 4.1.1)
patchwork 1.1.1 2020-12-17 [1] CRAN (R 4.1.1)
permute 0.9-5 2019-03-12 [1] CRAN (R 4.1.1)
pillar 1.6.4 2021-10-18 [1] CRAN (R 4.1.1)
pkgconfig 2.0.3 2019-09-22 [1] CRAN (R 4.1.1)
purrr 0.3.4 2020-04-17 [1] CRAN (R 4.1.1)
R6 2.5.1 2021-08-19 [1] CRAN (R 4.1.1)
Rcpp 1.0.7 2021-07-07 [1] CRAN (R 4.1.1)
RCurl 1.98-1.5 2021-09-17 [1] CRAN (R 4.1.1)
rlang 0.4.12 2021-10-18 [1] CRAN (R 4.1.1)
rvcheck * 0.2.0 2021-09-14 [1] CRAN (R 4.1.1)
S4Vectors 0.32.0 2021-10-26 [1] Bioconductor
sandwich 3.0-1 2021-05-18 [1] CRAN (R 4.1.1)
scales 1.1.1 2020-05-11 [1] CRAN (R 4.1.1)
sessioninfo 1.1.1 2018-11-05 [1] CRAN (R 4.1.1)
SummarizedExperiment 1.24.0 2021-10-26 [1] Bioconductor
survival 3.2-13 2021-08-24 [1] CRAN (R 4.1.1)
TH.data 1.1-0 2021-09-27 [1] CRAN (R 4.1.1)
tibble 3.1.6 2021-11-07 [1] CRAN (R 4.1.1)
tidyr 1.1.4.9000 2022-01-12 [1] Github (tidyverse/tidyr@3abfa55)
tidyselect 1.1.1 2021-04-30 [1] CRAN (R 4.1.1)
tidytree 0.3.7 2022-01-10 [1] CRAN (R 4.1.1)
treeio 1.18.0 2021-10-26 [1] Bioconductor
utf8 1.2.2 2021-07-24 [1] CRAN (R 4.1.1)
vctrs 0.3.8 2021-04-29 [1] CRAN (R 4.1.1)
vegan 2.5-7 2020-11-28 [1] CRAN (R 4.1.1)
wget * 0.0.1 2021-12-06 [1] local
withr 2.4.3 2021-11-30 [1] CRAN (R 4.1.1)
XVector 0.34.0 2021-10-26 [1] Bioconductor
yulab.utils 0.0.4 2021-10-09 [1] CRAN (R 4.1.1)
zlibbioc 1.40.0 2021-10-26 [1] Bioconductor
zoo 1.8-9 2021-03-09 [1] CRAN (R 4.1.1)
[1] /mnt/d/UbuntuApps/R/4.1.1/lib/R/library
Hey, thank you for your fast answer and your suggested approach.
I will just quickly double check your R session information with mine to make sure I used the right libraries. Furthermore I try to reproduce your suggestion above to convert it to MPSE.
In case it should fail again, I will send you my metadata and the code used to produce the ps object "lime" and it's location based subset "lime_dud" via e-mail. I appreciate your willingness to help a lot!
Cheers and I keep you posted
Hello again
I encounter the same error on the command:> taxonomy(mpse) <- taxatab and you should have received a mail with my metadata. The packages check out so far, but still here is my session info:
sessioninfo::session_info()
- Session info ---------------------------------------------------------------------------------------------------------------------------------------
setting value
version R version 4.1.1 (2021-08-10)
os Windows 10 x64 (build 19043)
system x86_64, mingw32
ui RStudio
language (EN)
collate German_Switzerland.1252
ctype German_Switzerland.1252
tz Europe/Berlin
date 2022-01-13
rstudio 2021.09.0+351 Ghost Orchid (desktop)
pandoc 2.14.0.3 @ C:/Program Files/RStudio/bin/pandoc/ (via rmarkdown)
- Packages -------------------------------------------------------------------------------------------------------------------------------------------
! package * version date (UTC) lib source
abind 1.4-5 2016-07-21 [1] CRAN (R 4.1.1)
ade4 1.7-18 2021-09-16 [1] CRAN (R 4.1.1)
ape 5.5 2021-04-25 [1] CRAN (R 4.1.1)
aplot 0.1.2 2022-01-10 [1] CRAN (R 4.1.1)
assertthat 0.2.1 2019-03-21 [1] CRAN (R 4.1.1)
backports 1.4.1 2021-12-13 [1] CRAN (R 4.1.2)
Biobase 2.52.0 2021-05-19 [1] Bioconductor
BiocGenerics 0.40.0 2021-10-26 [1] Bioconductor
BiocManager 1.30.16 2021-06-15 [1] CRAN (R 4.1.1)
biomformat 1.20.0 2021-05-19 [1] Bioconductor
Biostrings 2.60.2 2021-08-05 [1] Bioconductor
bitops 1.0-7 2021-04-24 [1] CRAN (R 4.1.1)
broom 0.7.11 2022-01-03 [1] CRAN (R 4.1.2)
car 3.0-12 2021-11-06 [1] CRAN (R 4.1.2)
carData 3.0-5 2022-01-06 [1] CRAN (R 4.1.2)
caret 6.0-90 2021-10-09 [1] CRAN (R 4.1.1)
cellranger 1.1.0 2016-07-27 [1] CRAN (R 4.1.1)
class 7.3-19 2021-05-03 [2] CRAN (R 4.1.1)
cli 3.1.0 2021-10-27 [1] CRAN (R 4.1.1)
cluster 2.1.2 2021-04-17 [2] CRAN (R 4.1.1)
codetools 0.2-18 2020-11-04 [2] CRAN (R 4.1.1)
coin * 1.4-2 2021-10-08 [1] CRAN (R 4.1.2)
colorspace 2.0-2 2021-06-24 [1] CRAN (R 4.1.1)
conquer 1.2.1 2021-11-01 [1] CRAN (R 4.1.2)
crayon 1.4.2 2021-10-29 [1] CRAN (R 4.1.1)
data.table 1.14.2 2021-09-27 [1] CRAN (R 4.1.1)
DBI 1.1.2 2021-12-20 [1] CRAN (R 4.1.2)
dbplyr 2.1.1 2021-04-06 [1] CRAN (R 4.1.1)
DelayedArray 0.18.0 2021-05-19 [1] Bioconductor
digest 0.6.29 2021-12-01 [1] CRAN (R 4.1.2)
dplyr * 1.0.7 2021-06-18 [1] CRAN (R 4.1.1)
ellipsis 0.3.2 2021-04-29 [1] CRAN (R 4.1.1)
evaluate 0.14 2019-05-28 [1] CRAN (R 4.1.1)
extrafont 0.17 2014-12-08 [1] CRAN (R 4.1.1)
extrafontdb 1.0 2012-06-11 [1] CRAN (R 4.1.1)
fansi 0.5.0 2021-05-25 [1] CRAN (R 4.1.1)
farver 2.1.0 2021-02-28 [1] CRAN (R 4.1.1)
fastmap 1.1.0 2021-01-25 [1] CRAN (R 4.1.1)
forcats * 0.5.1 2021-01-27 [1] CRAN (R 4.1.1)
foreach 1.5.1 2020-10-15 [1] CRAN (R 4.1.1)
fs 1.5.2 2021-12-08 [1] CRAN (R 4.1.2)
future 1.23.0 2021-10-31 [1] CRAN (R 4.1.1)
future.apply 1.8.1 2021-08-10 [1] CRAN (R 4.1.1)
gdtools 0.2.3 2021-01-06 [1] CRAN (R 4.1.1)
generics 0.1.1 2021-10-25 [1] CRAN (R 4.1.1)
GenomeInfoDb 1.30.0 2021-10-26 [1] Bioconductor
GenomeInfoDbData 1.2.7 2022-01-13 [1] Bioconductor
GenomicRanges 1.44.0 2021-05-19 [1] Bioconductor
ggforce * 0.3.3 2021-03-05 [1] CRAN (R 4.1.2)
ggfun 0.0.4 2021-09-17 [1] CRAN (R 4.1.2)
ggnewscale 0.4.5 2021-01-11 [1] CRAN (R 4.1.2)
ggplot2 * 3.3.5 2021-06-25 [1] CRAN (R 4.1.1)
ggplotify 0.1.0 2021-09-02 [1] CRAN (R 4.1.2)
ggpmisc * 0.4.5 2021-12-11 [1] CRAN (R 4.1.2)
ggpp * 0.4.3 2021-12-17 [1] CRAN (R 4.1.2)
ggpubr * 0.4.0 2020-06-27 [1] CRAN (R 4.1.1)
ggrepel 0.9.1 2021-01-15 [1] CRAN (R 4.1.1)
ggsignif 0.6.3 2021-09-09 [1] CRAN (R 4.1.1)
ggstar 1.0.3 2021-12-03 [1] CRAN (R 4.1.2)
ggthemes * 4.2.4 2021-01-20 [1] CRAN (R 4.1.2)
ggtree 3.2.1 2021-11-16 [1] Bioconductor
ggtreeExtra 1.4.1 2021-11-28 [1] Bioconductor
globals 0.14.0 2020-11-22 [1] CRAN (R 4.1.1)
glue 1.4.2 2020-08-27 [1] CRAN (R 4.1.1)
gower 0.2.2 2020-06-23 [1] CRAN (R 4.1.1)
gridExtra * 2.3 2017-09-09 [1] CRAN (R 4.1.2)
gridGraphics 0.5-1 2020-12-13 [1] CRAN (R 4.1.2)
gtable 0.3.0 2019-03-25 [1] CRAN (R 4.1.1)
haven 2.4.3 2021-08-04 [1] CRAN (R 4.1.1)
hms 1.1.1 2021-09-26 [1] CRAN (R 4.1.1)
hrbrthemes * 0.8.0 2020-03-06 [1] CRAN (R 4.1.2)
htmltools 0.5.2 2021-08-25 [1] CRAN (R 4.1.1)
httr 1.4.2 2020-07-20 [1] CRAN (R 4.1.1)
igraph 1.2.6 2020-10-06 [1] CRAN (R 4.1.1)
ipred 0.9-12 2021-09-15 [1] CRAN (R 4.1.1)
IRanges 2.26.0 2021-05-19 [1] Bioconductor
iterators 1.0.13 2020-10-15 [1] CRAN (R 4.1.1)
jsonlite 1.7.2 2020-12-09 [1] CRAN (R 4.1.1)
knitr 1.37 2021-12-16 [1] CRAN (R 4.1.2)
lattice * 0.20-44 2021-05-02 [2] CRAN (R 4.1.1)
lava 1.6.10 2021-09-02 [1] CRAN (R 4.1.1)
lazyeval 0.2.2 2019-03-15 [1] CRAN (R 4.1.1)
libcoin 1.0-9 2021-09-27 [1] CRAN (R 4.1.2)
lifecycle 1.0.1 2021-09-24 [1] CRAN (R 4.1.1)
listenv 0.8.0 2019-12-05 [1] CRAN (R 4.1.1)
lubridate 1.8.0 2021-10-07 [1] CRAN (R 4.1.1)
magick * 2.7.3 2021-08-18 [1] CRAN (R 4.1.2)
magrittr 2.0.1 2020-11-17 [1] CRAN (R 4.1.1)
MASS 7.3-54 2021-05-03 [2] CRAN (R 4.1.1)
Matrix 1.3-4 2021-06-01 [2] CRAN (R 4.1.1)
MatrixGenerics 1.6.0 2021-10-26 [1] Bioconductor
MatrixModels 0.5-0 2021-03-02 [1] CRAN (R 4.1.1)
matrixStats 0.61.0 2021-09-17 [1] CRAN (R 4.1.1)
mgcv 1.8-36 2021-06-01 [2] CRAN (R 4.1.1)
MicrobiotaProcess * 1.7.5 2022-01-13 [1] Github (YuLab-SMU/MicrobiotaProcess@23dc564)
ModelMetrics 1.2.2.2 2020-03-17 [1] CRAN (R 4.1.1)
modelr 0.1.8 2020-05-19 [1] CRAN (R 4.1.1)
modeltools 0.2-23 2020-03-05 [1] CRAN (R 4.1.1)
multcomp 1.4-18 2022-01-04 [1] CRAN (R 4.1.2)
multtest 2.48.0 2021-05-19 [1] Bioconductor
munsell 0.5.0 2018-06-12 [1] CRAN (R 4.1.1)
mvtnorm 1.1-3 2021-10-08 [1] CRAN (R 4.1.1)
nlme 3.1-152 2021-02-04 [2] CRAN (R 4.1.1)
nnet 7.3-16 2021-05-03 [2] CRAN (R 4.1.1)
parallelly 1.30.0 2021-12-17 [1] CRAN (R 4.1.2)
patchwork * 1.1.1 2020-12-17 [1] CRAN (R 4.1.1)
permute * 0.9-5 2019-03-12 [1] CRAN (R 4.1.1)
phyloseq * 1.36.0 2021-05-19 [1] Bioconductor
pillar 1.6.4 2021-10-18 [1] CRAN (R 4.1.1)
pkgconfig 2.0.3 2019-09-22 [1] CRAN (R 4.1.1)
plyr * 1.8.6 2020-03-03 [1] CRAN (R 4.1.1)
polyclip 1.10-0 2019-03-14 [1] CRAN (R 4.1.1)
pROC 1.18.0 2021-09-03 [1] CRAN (R 4.1.1)
prodlim 2019.11.13 2019-11-17 [1] CRAN (R 4.1.1)
purrr * 0.3.4 2020-04-17 [1] CRAN (R 4.1.1)
quantreg * 5.86 2021-06-06 [1] CRAN (R 4.1.1)
R6 2.5.1 2021-08-19 [1] CRAN (R 4.1.1)
Rcpp 1.0.7 2021-07-07 [1] CRAN (R 4.1.1)
RCurl 1.98-1.5 2021-09-17 [1] CRAN (R 4.1.1)
readr * 2.1.1 2021-11-30 [1] CRAN (R 4.1.2)
readxl 1.3.1 2019-03-13 [1] CRAN (R 4.1.1)
recipes 0.1.17 2021-09-27 [1] CRAN (R 4.1.1)
reprex 2.0.1 2021-08-05 [1] CRAN (R 4.1.1)
reshape2 1.4.4 2020-04-09 [1] CRAN (R 4.1.1)
rhdf5 2.36.0 2021-05-19 [1] Bioconductor
D rhdf5filters 1.4.0 2021-05-19 [1] Bioconductor
Rhdf5lib 1.14.2 2021-07-06 [1] Bioconductor
rlang 0.4.11 2021-04-30 [1] CRAN (R 4.1.1)
rmarkdown 2.11 2021-09-14 [1] CRAN (R 4.1.1)
rpart 4.1-15 2019-04-12 [2] CRAN (R 4.1.1)
rstatix 0.7.0 2021-02-13 [1] CRAN (R 4.1.1)
rstudioapi 0.13 2020-11-12 [1] CRAN (R 4.1.1)
Rttf2pt1 1.3.9 2021-07-22 [1] CRAN (R 4.1.1)
rvest 1.0.2 2021-10-16 [1] CRAN (R 4.1.1)
S4Vectors 0.30.2 2021-10-03 [1] Bioconductor
sandwich 3.0-1 2021-05-18 [1] CRAN (R 4.1.2)
scales * 1.1.1 2020-05-11 [1] CRAN (R 4.1.1)
scico * 1.3.0 2021-12-08 [1] CRAN (R 4.1.2)
sessioninfo 1.2.2 2021-12-06 [1] CRAN (R 4.1.2)
SparseM * 1.81 2021-02-18 [1] CRAN (R 4.1.1)
stringi 1.7.5 2021-10-04 [1] CRAN (R 4.1.1)
stringr * 1.4.0 2019-02-10 [1] CRAN (R 4.1.1)
SummarizedExperiment 1.24.0 2021-10-26 [1] Bioconductor
survival * 3.2-11 2021-04-26 [2] CRAN (R 4.1.1)
systemfonts 1.0.3 2021-10-13 [1] CRAN (R 4.1.1)
TH.data 1.1-0 2021-09-27 [1] CRAN (R 4.1.2)
tibble * 3.1.5 2021-09-30 [1] CRAN (R 4.1.1)
tidyr * 1.1.4 2021-09-27 [1] CRAN (R 4.1.1)
tidyselect 1.1.1 2021-04-30 [1] CRAN (R 4.1.1)
tidytree 0.3.7 2022-01-10 [1] CRAN (R 4.1.1)
tidyverse * 1.3.1 2021-04-15 [1] CRAN (R 4.1.2)
timeDate 3043.102 2018-02-21 [1] CRAN (R 4.1.1)
treeio 1.18.1 2021-11-14 [1] Bioconductor
tweenr 1.0.2 2021-03-23 [1] CRAN (R 4.1.2)
tzdb 0.2.0 2021-10-27 [1] CRAN (R 4.1.1)
utf8 1.2.2 2021-07-24 [1] CRAN (R 4.1.1)
vctrs 0.3.8 2021-04-29 [1] CRAN (R 4.1.1)
vegan * 2.5-7 2020-11-28 [1] CRAN (R 4.1.1)
viridis * 0.6.2 2021-10-13 [1] CRAN (R 4.1.1)
viridisLite * 0.4.0 2021-04-13 [1] CRAN (R 4.1.1)
withr 2.4.3 2021-11-30 [1] CRAN (R 4.1.2)
xfun 0.29 2021-12-14 [1] CRAN (R 4.1.2)
xml2 1.3.3 2021-11-30 [1] CRAN (R 4.1.2)
XVector 0.32.0 2021-05-19 [1] Bioconductor
yulab.utils 0.0.4 2021-10-09 [1] CRAN (R 4.1.2)
zlibbioc 1.38.0 2021-05-19 [1] Bioconductor
zoo 1.8-9 2021-03-09 [1] CRAN (R 4.1.1)
[1] C:/Users/Simon/Documents/R/win-library/4.1
[2] C:/Program Files/R/R-4.1.1/library
D -- DLL MD5 mismatch, broken installation.
I checked the taxonomy table and found some Kingdom
of ASVs
is k__
, which means the annotation of kingdom
level is Unknown. The original version cannot handle this. Now, this issue was fixed by github
version. You can reinstall it via remotes::install_github("YuLab-SMU/MicrobiotaProcess")
> library(MicrobiotaProcess)
> otuda <- read.csv("./otu_table.csv", row.names=1)
> taxada <- read.csv("./tax_table.csv", row.names=1)
> taxada %>% filter(Kingdom=="k__")
Kingdom Phylum Class Order Family Genus
ASV23455 k__ p__ c__ o__ f__ g__
ASV24768 k__ p__ c__ o__ f__ g__
ASV24998 k__ p__ c__ o__ f__ g__
ASV25075 k__ p__ c__ o__ f__ g__
ASV26098 k__ p__ c__ o__ f__ g__
ASV26141 k__ p__ c__ o__ f__ g__
ASV26149 k__ p__ c__ o__ f__ g__
ASV26302 k__ p__ c__ o__ f__ g__
ASV26318 k__ p__ c__ o__ f__ g__
ASV26466 k__ p__ c__ o__ f__ g__
ASV26526 k__ p__ c__ o__ f__ g__
ASV26527 k__ p__ c__ o__ f__ g__
ASV26848 k__ p__ c__ o__ f__ g__
ASV26912 k__ p__ c__ o__ f__ g__
ASV26931 k__ p__ c__ o__ f__ g__
ASV27027 k__ p__ c__ o__ f__ g__
ASV27040 k__ p__ c__ o__ f__ g__
ASV27165 k__ p__ c__ o__ f__ g__
> mpse <- MPSE(assays=list(Abundance=t(otuda)))
> mpse
# A MPSE-tibble (MPSE object) abstraction: 1,519,506 × 3
# OTU=28139 | Samples=54 | Assays=Abundance | Taxonomy=NULL
OTU Sample Abundance
<chr> <chr> <int>
1 ASV1 S1-1 204
2 ASV2 S1-1 269
3 ASV3 S1-1 0
4 ASV4 S1-1 113
5 ASV5 S1-1 67
6 ASV6 S1-1 54
7 ASV7 S1-1 127
8 ASV8 S1-1 103
9 ASV9 S1-1 0
10 ASV10 S1-1 0
# … with 1,519,496 more rows
> taxonomy(mpse) <- taxada
> mpse
# A MPSE-tibble (MPSE object) abstraction: 1,519,506 × 9
# OTU=28139 | Samples=54 | Assays=Abundance | Taxonomy=Kingdom, Phylum, Class, Order, Family, Genus
OTU Sample Abundance Kingdom Phylum Class Order Family Genus
<chr> <chr> <int> <chr> <chr> <chr> <chr> <chr> <chr>
1 ASV1 S1-1 204 k__Bacteria p__Prot… c__Alph… o__Rhi… f__Xant… g__un_…
2 ASV2 S1-1 269 k__Bacteria p__Prot… c__Alph… o__Rhi… f__Meth… g__un_…
3 ASV3 S1-1 0 k__Bacteria p__Prot… c__Alph… o__Rhi… f__Meth… g__un_…
4 ASV4 S1-1 113 k__Bacteria p__Nitr… c__Nitr… o__Nit… f__Nitr… g__Nit…
5 ASV5 S1-1 67 k__Bacteria p__Prot… c__Alph… o__Rhi… f__Xant… g__Bra…
6 ASV6 S1-1 54 k__Bacteria p__Prot… c__Alph… o__Rhi… f__Xant… g__un_…
7 ASV7 S1-1 127 k__Bacteria p__Myxo… c__bact… o__un_… f__un_c… g__un_…
8 ASV8 S1-1 103 k__Bacteria p__Acti… c__Acti… o__Mic… f__Micr… g__Pse…
9 ASV9 S1-1 0 k__Bacteria p__Prot… c__Gamm… o__Bur… f__SC-I… g__un_…
10 ASV10 S1-1 0 k__Bacteria p__Chlo… c__Chlo… o__Chl… f__Rose… g__un_…
# … with 1,519,496 more rows
Or you can use convert_to_treedata
to convert the taxada
to a treedata
class first, then specifying the taxatree
in MPSE
function.
> taxa.tree <- taxada %>% convert_to_treedata(include.rownames=T)
> mpse2 <- MPSE(assays=list(Abundance=t(otuda)), taxatree=taxa.tree)
> identical(mpse, mpse2)
Then you can use as.phyloseq
to convert the MPSE
class to phyloseq
class, if you want to do it.
ps <- mpse %>% as.phyloseq(.abundance=Abundance)
ps
Thank you very much for taking your time and the adaptation to the package. It worked right from the start and I am therefore closing this issue. Looking forward to do more work with MicrobiotaProcess!
Cheers and best regards
Simon
Hello all
First of all, I really appreciate this package and so far I like it a lot, thank you for your work. It's my first try to get an issue solved via the github community and I will try my best to make it reproducible. It think my issue is similar to this closed issue here -> #Error in seq_len(ncol(taxdf)) : argument must be coercible to non-negative integer #13
My issue: I'd like to make a diff_analysis and later process it to ggdiffclade but fail to produce the object "deres <- diff_analysis(......). The code works just fine when using the provided example data. However, my command stops with following error message:
_Error in seq_len(ncol(taxdf)) : argument must be coercible to non-negative integer In addition: Warning message: In seqlen(ncol(taxdf)) : first element used of 'length.out' argument
My assumption is, that the code can not handle certain structures within my data, more precisely the tax_table within my phyloseq object, as unassigned taxa get the entry e.g "g" instead of "gGaiella".
My ps object consists of an otu_table(), tax_table() and sample_data() and looks like this:
I tried several work-arounds such as converting my ps object to MPSE via the as.MPSE() command but keep getting the same error message:
Any help is certainly appreciated, if the example lacks sufficient information to reproduce or understand my issue I am glad to provide further infos. Thanks in advance and best regards