Open nina-hahn opened 4 months ago
What is the output from:
tail( as.data.frame(kk) )
Hi guido,
it is
tail(as.data.frame(kk))
[1] category subcategory ID Description GeneRatio BgRatio pvalue p.adjust
[9] qvalue geneID Count
<0 Zeilen> (oder row.names mit Länge 0)
Aha, that suggests the significance filtering indeed worked.
Please be aware that:
limma
package implemented the BH algorithm in the stats
package, and started calling FDR 'adjusted p-values'. See here.This explains why the terms FDR, adjusted p-values and q-values are often used routinely (and interchangeably).
Also note that the Benjamini–Hochberg procedure generates more conservative FDR values than those calculated by the q-value, and that clusterProfiler
calculates 'adjusted p-values' according to the BH algorithm as well as 'q-values' according to Storey's algorithm (utilizing resp. the packages stats
and qvalue
).
Lastly, to extract all results from an enrichment analysis you should convert it as a data frame (as.data.frame
). See 2nd code chunck.
With this in mind:
pvalueCutoff
(since pAdjustMethod = "BH"
, these are thus FDR values!) and qvalueCutoff,
you effectively will always filter on BH adjusted p-values and NOT q-values, because the BH procedure generates more conservative FDR than Storey's qvalue approach.pAdjustMethod
= "none". To show this with some code:
> ## load library
> library(clusterProfiler)
>
> ## load sample data
> data(geneList, package="DOSE")
> gene <- names(geneList)[abs(geneList) > 2]
>
> ## perform enrichment analysis
> ## calculate adjusted p-values according to BH,
> ## and set pvalueCutoff and qvalueCutoff both to 0.05.
> res1 <- enrichKEGG(gene = gene,
+ organism = 'hsa',
+ pvalueCutoff = 0.05,
+ qvalueCutoff = 0.05,
+ pAdjustMethod = "BH")
>
>
> ## check results. Note "7 enriched terms found"
> res1
#
# over-representation test
#
#...@organism hsa
#...@ontology KEGG
#...@keytype kegg
#...@gene chr [1:207] "4312" "8318" "10874" "55143" "55388" "991" "6280" "2305" ...
#...pvalues adjusted by 'BH' with cutoff <0.05
#...7 enriched terms found
'data.frame': 7 obs. of 14 variables:
$ category : chr "Cellular Processes" "Cellular Processes" "Cellular Processes" "Environmental Information Processing" ...
$ subcategory : chr "Cell growth and death" "Cell growth and death" "Cell growth and death" "Signaling molecules and interaction" ...
$ ID : chr "hsa04110" "hsa04114" "hsa04218" "hsa04061" ...
$ Description : chr "Cell cycle" "Oocyte meiosis" "Cellular senescence" "Viral protein interaction with cytokine and cytokine receptor" ...
$ GeneRatio : chr "15/106" "10/106" "10/106" "8/106" ...
$ BgRatio : chr "158/8842" "139/8842" "157/8842" "100/8842" ...
$ RichFactor : num 0.0949 0.0719 0.0637 0.08 0.0921 ...
$ FoldEnrichment: num 7.92 6 5.31 6.67 7.68 ...
$ zScore : num 9.67 6.55 6.01 6.28 6.44 ...
$ pvalue : num 4.95e-10 5.88e-06 1.73e-05 2.44e-05 3.23e-05 ...
$ p.adjust : num 1.06e-07 6.29e-04 1.23e-03 1.31e-03 1.38e-03 ...
$ qvalue : num 1.04e-07 6.16e-04 1.21e-03 1.28e-03 1.35e-03 ...
$ geneID : chr "8318/991/9133/10403/890/983/4085/81620/7272/9212/1111/9319/891/4174/9232" "991/9133/983/4085/51806/6790/891/9232/3708/5241" "2305/4605/9133/890/983/51806/1111/891/776/3708" "3627/10563/6373/4283/6362/6355/9547/1524" ...
$ Count : int 15 10 10 8 7 10 7
#...Citation
T Wu, E Hu, S Xu, M Chen, P Guo, Z Dai, T Feng, L Zhou, W Tang, L Zhan, X Fu, S Liu, X Bo, and G Yu.
clusterProfiler 4.0: A universal enrichment tool for interpreting omics data.
The Innovation. 2021, 2(3):100141
>
> ## extract all results. Note that p.adjust values are always (slightly) larger (= more conservative) than qvalue
> as.data.frame(res1)
category
hsa04110 Cellular Processes
hsa04114 Cellular Processes
hsa04218 Cellular Processes
hsa04061 Environmental Information Processing
hsa03320 Organismal Systems
hsa04814 Cellular Processes
hsa04914 Organismal Systems
subcategory ID
hsa04110 Cell growth and death hsa04110
hsa04114 Cell growth and death hsa04114
hsa04218 Cell growth and death hsa04218
hsa04061 Signaling molecules and interaction hsa04061
hsa03320 Endocrine system hsa03320
hsa04814 Cell motility hsa04814
hsa04914 Endocrine system hsa04914
Description
hsa04110 Cell cycle
hsa04114 Oocyte meiosis
hsa04218 Cellular senescence
hsa04061 Viral protein interaction with cytokine and cytokine receptor
hsa03320 PPAR signaling pathway
hsa04814 Motor proteins
hsa04914 Progesterone-mediated oocyte maturation
GeneRatio BgRatio RichFactor FoldEnrichment zScore pvalue
hsa04110 15/106 158/8842 0.09493671 7.919155 9.666494 4.951055e-10
hsa04114 10/106 139/8842 0.07194245 6.001086 6.546129 5.878161e-06
hsa04218 10/106 157/8842 0.06369427 5.313063 6.006176 1.726642e-05
hsa04061 8/106 100/8842 0.08000000 6.673208 6.284498 2.444647e-05
hsa03320 7/106 76/8842 0.09210526 7.682969 6.444999 3.232516e-05
hsa04814 10/106 197/8842 0.05076142 4.234269 5.056780 1.192289e-04
hsa04914 7/106 111/8842 0.06306306 5.260411 4.975404 3.564744e-04
p.adjust qvalue
hsa04110 1.059526e-07 1.037116e-07
hsa04114 6.289633e-04 6.156601e-04
hsa04218 1.231671e-03 1.205620e-03
hsa04061 1.307886e-03 1.280223e-03
hsa03320 1.383517e-03 1.354254e-03
hsa04814 4.252499e-03 4.162554e-03
hsa04914 1.089793e-02 1.066743e-02
geneID
hsa04110 8318/991/9133/10403/890/983/4085/81620/7272/9212/1111/9319/891/4174/9232
hsa04114 991/9133/983/4085/51806/6790/891/9232/3708/5241
hsa04218 2305/4605/9133/890/983/51806/1111/891/776/3708
hsa04061 3627/10563/6373/4283/6362/6355/9547/1524
hsa03320 4312/9415/9370/5105/2167/3158/5346
hsa04814 9493/1062/81930/3832/3833/146909/10112/24137/4629/7802
hsa04914 9133/890/983/4085/6790/891/5241
Count
hsa04110 15
hsa04114 10
hsa04218 10
hsa04061 8
hsa03320 7
hsa04814 10
hsa04914 7
>
>
>
> ## repeat, but set qvalueCutoff = 0.01
> ## this shows that filtering on qvalue works; since only "6 enriched terms found"
> res2 <- enrichKEGG(gene = gene,
+ organism = 'hsa',
+ pvalueCutoff = 0.05,
+ qvalueCutoff = 0.01,
+ pAdjustMethod = "BH")
>
> res2
#
# over-representation test
#
#...@organism hsa
#...@ontology KEGG
#...@keytype kegg
#...@gene chr [1:207] "4312" "8318" "10874" "55143" "55388" "991" "6280" "2305" ...
#...pvalues adjusted by 'BH' with cutoff <0.05
#...6 enriched terms found
'data.frame': 6 obs. of 14 variables:
$ category : chr "Cellular Processes" "Cellular Processes" "Cellular Processes" "Environmental Information Processing" ...
$ subcategory : chr "Cell growth and death" "Cell growth and death" "Cell growth and death" "Signaling molecules and interaction" ...
$ ID : chr "hsa04110" "hsa04114" "hsa04218" "hsa04061" ...
$ Description : chr "Cell cycle" "Oocyte meiosis" "Cellular senescence" "Viral protein interaction with cytokine and cytokine receptor" ...
$ GeneRatio : chr "15/106" "10/106" "10/106" "8/106" ...
$ BgRatio : chr "158/8842" "139/8842" "157/8842" "100/8842" ...
$ RichFactor : num 0.0949 0.0719 0.0637 0.08 0.0921 ...
$ FoldEnrichment: num 7.92 6 5.31 6.67 7.68 ...
$ zScore : num 9.67 6.55 6.01 6.28 6.44 ...
$ pvalue : num 4.95e-10 5.88e-06 1.73e-05 2.44e-05 3.23e-05 ...
$ p.adjust : num 1.06e-07 6.29e-04 1.23e-03 1.31e-03 1.38e-03 ...
$ qvalue : num 1.04e-07 6.16e-04 1.21e-03 1.28e-03 1.35e-03 ...
$ geneID : chr "8318/991/9133/10403/890/983/4085/81620/7272/9212/1111/9319/891/4174/9232" "991/9133/983/4085/51806/6790/891/9232/3708/5241" "2305/4605/9133/890/983/51806/1111/891/776/3708" "3627/10563/6373/4283/6362/6355/9547/1524" ...
$ Count : int 15 10 10 8 7 10
#...Citation
T Wu, E Hu, S Xu, M Chen, P Guo, Z Dai, T Feng, L Zhou, W Tang, L Zhan, X Fu, S Liu, X Bo, and G Yu.
clusterProfiler 4.0: A universal enrichment tool for interpreting omics data.
The Innovation. 2021, 2(3):100141
>
> as.data.frame(res2)
category
hsa04110 Cellular Processes
hsa04114 Cellular Processes
hsa04218 Cellular Processes
hsa04061 Environmental Information Processing
hsa03320 Organismal Systems
hsa04814 Cellular Processes
subcategory ID
hsa04110 Cell growth and death hsa04110
hsa04114 Cell growth and death hsa04114
hsa04218 Cell growth and death hsa04218
hsa04061 Signaling molecules and interaction hsa04061
hsa03320 Endocrine system hsa03320
hsa04814 Cell motility hsa04814
Description
hsa04110 Cell cycle
hsa04114 Oocyte meiosis
hsa04218 Cellular senescence
hsa04061 Viral protein interaction with cytokine and cytokine receptor
hsa03320 PPAR signaling pathway
hsa04814 Motor proteins
GeneRatio BgRatio RichFactor FoldEnrichment zScore pvalue
hsa04110 15/106 158/8842 0.09493671 7.919155 9.666494 4.951055e-10
hsa04114 10/106 139/8842 0.07194245 6.001086 6.546129 5.878161e-06
hsa04218 10/106 157/8842 0.06369427 5.313063 6.006176 1.726642e-05
hsa04061 8/106 100/8842 0.08000000 6.673208 6.284498 2.444647e-05
hsa03320 7/106 76/8842 0.09210526 7.682969 6.444999 3.232516e-05
hsa04814 10/106 197/8842 0.05076142 4.234269 5.056780 1.192289e-04
p.adjust qvalue
hsa04110 1.059526e-07 1.037116e-07
hsa04114 6.289633e-04 6.156601e-04
hsa04218 1.231671e-03 1.205620e-03
hsa04061 1.307886e-03 1.280223e-03
hsa03320 1.383517e-03 1.354254e-03
hsa04814 4.252499e-03 4.162554e-03
geneID
hsa04110 8318/991/9133/10403/890/983/4085/81620/7272/9212/1111/9319/891/4174/9232
hsa04114 991/9133/983/4085/51806/6790/891/9232/3708/5241
hsa04218 2305/4605/9133/890/983/51806/1111/891/776/3708
hsa04061 3627/10563/6373/4283/6362/6355/9547/1524
hsa03320 4312/9415/9370/5105/2167/3158/5346
hsa04814 9493/1062/81930/3832/3833/146909/10112/24137/4629/7802
Count
hsa04110 15
hsa04114 10
hsa04218 10
hsa04061 8
hsa03320 7
hsa04814 10
>
>
>
> ## FDR filter by qvalue only
> ## by setting pAdjustMethod = "none"
> res3 <- enrichKEGG(gene = gene,
+ organism = 'hsa',
+ pvalueCutoff = 0.05,
+ qvalueCutoff = 0.05,
+ pAdjustMethod = "none")
>
> res3
#
# over-representation test
#
#...@organism hsa
#...@ontology KEGG
#...@keytype kegg
#...@gene chr [1:207] "4312" "8318" "10874" "55143" "55388" "991" "6280" "2305" ...
#...pvalues adjusted by 'none' with cutoff <0.05
#...7 enriched terms found
'data.frame': 7 obs. of 14 variables:
$ category : chr "Cellular Processes" "Cellular Processes" "Cellular Processes" "Environmental Information Processing" ...
$ subcategory : chr "Cell growth and death" "Cell growth and death" "Cell growth and death" "Signaling molecules and interaction" ...
$ ID : chr "hsa04110" "hsa04114" "hsa04218" "hsa04061" ...
$ Description : chr "Cell cycle" "Oocyte meiosis" "Cellular senescence" "Viral protein interaction with cytokine and cytokine receptor" ...
$ GeneRatio : chr "15/106" "10/106" "10/106" "8/106" ...
$ BgRatio : chr "158/8842" "139/8842" "157/8842" "100/8842" ...
$ RichFactor : num 0.0949 0.0719 0.0637 0.08 0.0921 ...
$ FoldEnrichment: num 7.92 6 5.31 6.67 7.68 ...
$ zScore : num 9.67 6.55 6.01 6.28 6.44 ...
$ pvalue : num 4.95e-10 5.88e-06 1.73e-05 2.44e-05 3.23e-05 ...
$ p.adjust : num 4.95e-10 5.88e-06 1.73e-05 2.44e-05 3.23e-05 ...
$ qvalue : num 1.04e-07 6.16e-04 1.21e-03 1.28e-03 1.35e-03 ...
$ geneID : chr "8318/991/9133/10403/890/983/4085/81620/7272/9212/1111/9319/891/4174/9232" "991/9133/983/4085/51806/6790/891/9232/3708/5241" "2305/4605/9133/890/983/51806/1111/891/776/3708" "3627/10563/6373/4283/6362/6355/9547/1524" ...
$ Count : int 15 10 10 8 7 10 7
#...Citation
T Wu, E Hu, S Xu, M Chen, P Guo, Z Dai, T Feng, L Zhou, W Tang, L Zhan, X Fu, S Liu, X Bo, and G Yu.
clusterProfiler 4.0: A universal enrichment tool for interpreting omics data.
The Innovation. 2021, 2(3):100141
>
> as.data.frame(res3)
category
hsa04110 Cellular Processes
hsa04114 Cellular Processes
hsa04218 Cellular Processes
hsa04061 Environmental Information Processing
hsa03320 Organismal Systems
hsa04814 Cellular Processes
hsa04914 Organismal Systems
subcategory ID
hsa04110 Cell growth and death hsa04110
hsa04114 Cell growth and death hsa04114
hsa04218 Cell growth and death hsa04218
hsa04061 Signaling molecules and interaction hsa04061
hsa03320 Endocrine system hsa03320
hsa04814 Cell motility hsa04814
hsa04914 Endocrine system hsa04914
Description
hsa04110 Cell cycle
hsa04114 Oocyte meiosis
hsa04218 Cellular senescence
hsa04061 Viral protein interaction with cytokine and cytokine receptor
hsa03320 PPAR signaling pathway
hsa04814 Motor proteins
hsa04914 Progesterone-mediated oocyte maturation
GeneRatio BgRatio RichFactor FoldEnrichment zScore pvalue
hsa04110 15/106 158/8842 0.09493671 7.919155 9.666494 4.951055e-10
hsa04114 10/106 139/8842 0.07194245 6.001086 6.546129 5.878161e-06
hsa04218 10/106 157/8842 0.06369427 5.313063 6.006176 1.726642e-05
hsa04061 8/106 100/8842 0.08000000 6.673208 6.284498 2.444647e-05
hsa03320 7/106 76/8842 0.09210526 7.682969 6.444999 3.232516e-05
hsa04814 10/106 197/8842 0.05076142 4.234269 5.056780 1.192289e-04
hsa04914 7/106 111/8842 0.06306306 5.260411 4.975404 3.564744e-04
p.adjust qvalue
hsa04110 4.951055e-10 1.037116e-07
hsa04114 5.878161e-06 6.156601e-04
hsa04218 1.726642e-05 1.205620e-03
hsa04061 2.444647e-05 1.280223e-03
hsa03320 3.232516e-05 1.354254e-03
hsa04814 1.192289e-04 4.162554e-03
hsa04914 3.564744e-04 1.066743e-02
geneID
hsa04110 8318/991/9133/10403/890/983/4085/81620/7272/9212/1111/9319/891/4174/9232
hsa04114 991/9133/983/4085/51806/6790/891/9232/3708/5241
hsa04218 2305/4605/9133/890/983/51806/1111/891/776/3708
hsa04061 3627/10563/6373/4283/6362/6355/9547/1524
hsa03320 4312/9415/9370/5105/2167/3158/5346
hsa04814 9493/1062/81930/3832/3833/146909/10112/24137/4629/7802
hsa04914 9133/890/983/4085/6790/891/5241
Count
hsa04110 15
hsa04114 10
hsa04218 10
hsa04061 8
hsa03320 7
hsa04814 10
hsa04914 7
>
NOTE: I am using the development version of DOSE
, and therefore more columns with results are returned (RichFactor
, FoldEnrichment
, and zScore
). Yet, this is unrelated to the issue you observed!
See commit: https://github.com/YuLab-SMU/DOSE/commit/98301d9860df116cd89852c660cd0fd132efac2e
> packageVersion("DOSE")
[1] ‘3.31.2’
>
To obtain the results that are filtered on e.g. qvalue cutoff. you extract these through as.data.frame
.
If you directly access the result slot using low-level @
accessor, then the UNfiltered results are accessed. This is what likely is visible in your screenshot in the first post.
> ## obtain filtered results.
> ## this is what end-user usually should do
> as.data.frame(res3)
category subcategory ID
hsa04110 Cellular Processes Cell growth and death hsa04110
hsa04114 Cellular Processes Cell growth and death hsa04114
hsa04218 Cellular Processes Cell growth and death hsa04218
hsa04061 Environmental Information Processing Signaling molecules and interaction hsa04061
hsa03320 Organismal Systems Endocrine system hsa03320
hsa04814 Cellular Processes Cell motility hsa04814
hsa04914 Organismal Systems Endocrine system hsa04914
Description GeneRatio BgRatio
hsa04110 Cell cycle 15/106 158/8842
hsa04114 Oocyte meiosis 10/106 139/8842
hsa04218 Cellular senescence 10/106 157/8842
hsa04061 Viral protein interaction with cytokine and cytokine receptor 8/106 100/8842
hsa03320 PPAR signaling pathway 7/106 76/8842
hsa04814 Motor proteins 10/106 197/8842
hsa04914 Progesterone-mediated oocyte maturation 7/106 111/8842
RichFactor FoldEnrichment zScore pvalue p.adjust qvalue
hsa04110 0.09493671 7.919155 9.666494 4.951055e-10 4.951055e-10 1.037116e-07
hsa04114 0.07194245 6.001086 6.546129 5.878161e-06 5.878161e-06 6.156601e-04
hsa04218 0.06369427 5.313063 6.006176 1.726642e-05 1.726642e-05 1.205620e-03
hsa04061 0.08000000 6.673208 6.284498 2.444647e-05 2.444647e-05 1.280223e-03
hsa03320 0.09210526 7.682969 6.444999 3.232516e-05 3.232516e-05 1.354254e-03
hsa04814 0.05076142 4.234269 5.056780 1.192289e-04 1.192289e-04 4.162554e-03
hsa04914 0.06306306 5.260411 4.975404 3.564744e-04 3.564744e-04 1.066743e-02
geneID Count
hsa04110 8318/991/9133/10403/890/983/4085/81620/7272/9212/1111/9319/891/4174/9232 15
hsa04114 991/9133/983/4085/51806/6790/891/9232/3708/5241 10
hsa04218 2305/4605/9133/890/983/51806/1111/891/776/3708 10
hsa04061 3627/10563/6373/4283/6362/6355/9547/1524 8
hsa03320 4312/9415/9370/5105/2167/3158/5346 7
hsa04814 9493/1062/81930/3832/3833/146909/10112/24137/4629/7802 10
hsa04914 9133/890/983/4085/6790/891/5241 7
>
>
> ## directly access results using @
> ## this should NOT be done by end-user
> ## note that no filtering is applied!
> head(res3@result)
category subcategory ID
hsa04110 Cellular Processes Cell growth and death hsa04110
hsa04114 Cellular Processes Cell growth and death hsa04114
hsa04218 Cellular Processes Cell growth and death hsa04218
hsa04061 Environmental Information Processing Signaling molecules and interaction hsa04061
hsa03320 Organismal Systems Endocrine system hsa03320
hsa04814 Cellular Processes Cell motility hsa04814
Description GeneRatio BgRatio
hsa04110 Cell cycle 15/106 158/8842
hsa04114 Oocyte meiosis 10/106 139/8842
hsa04218 Cellular senescence 10/106 157/8842
hsa04061 Viral protein interaction with cytokine and cytokine receptor 8/106 100/8842
hsa03320 PPAR signaling pathway 7/106 76/8842
hsa04814 Motor proteins 10/106 197/8842
RichFactor FoldEnrichment zScore pvalue p.adjust qvalue
hsa04110 0.09493671 7.919155 9.666494 4.951055e-10 4.951055e-10 1.037116e-07
hsa04114 0.07194245 6.001086 6.546129 5.878161e-06 5.878161e-06 6.156601e-04
hsa04218 0.06369427 5.313063 6.006176 1.726642e-05 1.726642e-05 1.205620e-03
hsa04061 0.08000000 6.673208 6.284498 2.444647e-05 2.444647e-05 1.280223e-03
hsa03320 0.09210526 7.682969 6.444999 3.232516e-05 3.232516e-05 1.354254e-03
hsa04814 0.05076142 4.234269 5.056780 1.192289e-04 1.192289e-04 4.162554e-03
geneID Count
hsa04110 8318/991/9133/10403/890/983/4085/81620/7272/9212/1111/9319/891/4174/9232 15
hsa04114 991/9133/983/4085/51806/6790/891/9232/3708/5241 10
hsa04218 2305/4605/9133/890/983/51806/1111/891/776/3708 10
hsa04061 3627/10563/6373/4283/6362/6355/9547/1524 8
hsa03320 4312/9415/9370/5105/2167/3158/5346 7
hsa04814 9493/1062/81930/3832/3833/146909/10112/24137/4629/7802 10
>
> tail(res3@result)
category subcategory ID
hsa05014 Human Diseases Neurodegenerative disease hsa05014
hsa04714 Organismal Systems Environmental adaptation hsa04714
hsa04014 Environmental Information Processing Signal transduction hsa04014
hsa05131 Human Diseases Infectious disease: bacterial hsa05131
hsa04144 Cellular Processes Transport and catabolism hsa04144
hsa04740 Organismal Systems Sensory system hsa04740
Description GeneRatio BgRatio RichFactor FoldEnrichment
hsa05014 Amyotrophic lateral sclerosis 2/106 371/8842 0.005390836 0.4496771
hsa04714 Thermogenesis 1/106 235/8842 0.004255319 0.3549578
hsa04014 Ras signaling pathway 1/106 238/8842 0.004201681 0.3504836
hsa05131 Shigellosis 1/106 249/8842 0.004016064 0.3350004
hsa04144 Endocytosis 1/106 252/8842 0.003968254 0.3310123
hsa04740 Olfactory transduction 1/106 453/8842 0.002207506 0.1841393
zScore pvalue p.adjust qvalue geneID Count
hsa05014 -1.192846 0.9410369 0.9410369 0.9384057 2066/7802 2
hsa04714 -1.103935 0.9434525 0.9434525 0.9384057 5346 1
hsa04014 -1.118860 0.9455164 0.9455164 0.9384057 51806 1
hsa05131 -1.172454 0.9524653 0.9524653 0.9384057 3708 1
hsa04144 -1.186777 0.9542030 0.9542030 0.9384057 23362 1
hsa04740 -1.963620 0.9963352 0.9963352 0.9752618 51806 1
>
>
Dear Guido,
thanks a lot, this was really helpful! I tried with my data as well and it is working. Then, it is clear for me, why I am exporting enriched KEGG terms using write.csv with kk@result while DotPlots are not working. Since there are no significant terms and I am solely exporting unfiltered terms to csv. I guess, I should now export as.data.frame(kk) to a csv file.
One thing related: You mentioned that @result should not be used by the enduser, since it shows unfiltered results. However, for similar functions e.g. gseGO it is working and the@result output is already filtered based on the chosen cut off values.
Best, Nina
Dear all,
I am using the enrichKegg function. An example
Using this code, I assumed that I should only get significant results based on q-value <0.05. However, it seems that the qvalueCutoff parameter is not working. I get results with a qvalue 0.2
Can I change this? I just wand to get significant results based on my q value threshold.
Best, Nina