aamini / evidential-deep-learning

Learn fast, scalable, and calibrated measures of uncertainty using neural networks!
https://proceedings.neurips.cc/paper/2020/file/aab085461de182608ee9f607f3f7d18f-Paper.pdf
Apache License 2.0
437 stars 97 forks source link

TypeError: tf__Dirichlet_SOS() missing 1 required positional argument: 't' #9

Open koo-ec opened 3 years ago

koo-ec commented 3 years ago

First of all, thanks for your valuable contribution. The EDL concept is interesting.

I have tried the EDL for a simple classification task like:

import evidential_deep_learning as edl
import tensorflow as tf
import sklearn
import sklearn.datasets

iris = sklearn.datasets.load_iris()
train, test, labels_train, labels_test = sklearn.model_selection.train_test_split(iris.data, iris.target, train_size=0.80)

model = tf.keras.Sequential(
    [
        tf.keras.layers.Dense(4, activation="relu"),
        tf.keras.layers.Dense(64, activation="relu"),
        edl.layers.DenseDirichlet(3), # Evidential distribution!
    ]
)
model.compile(
    optimizer=tf.keras.optimizers.Adam(1e-3), 
    loss=edl.losses.Dirichlet_SOS # Evidential loss!
)

history = model.fit(train, labels_train, batch_size=1024, epochs=32, verbose=0, validation_split=0.2)

However, I got the following error:

---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)
<ipython-input-24-26b7527e8794> in <module>
     19 )
     20 
---> 21 history = model.fit(train, labels_train, batch_size=1024, epochs=32, verbose=0, validation_split=0.2)

/opt/conda/lib/python3.7/site-packages/tensorflow/python/keras/engine/training.py in fit(self, x, y, batch_size, epochs, verbose, callbacks, validation_split, validation_data, shuffle, class_weight, sample_weight, initial_epoch, steps_per_epoch, validation_steps, validation_batch_size, validation_freq, max_queue_size, workers, use_multiprocessing)
   1098                 _r=1):
   1099               callbacks.on_train_batch_begin(step)
-> 1100               tmp_logs = self.train_function(iterator)
   1101               if data_handler.should_sync:
   1102                 context.async_wait()

/opt/conda/lib/python3.7/site-packages/tensorflow/python/eager/def_function.py in __call__(self, *args, **kwds)
    826     tracing_count = self.experimental_get_tracing_count()
    827     with trace.Trace(self._name) as tm:
--> 828       result = self._call(*args, **kwds)
    829       compiler = "xla" if self._experimental_compile else "nonXla"
    830       new_tracing_count = self.experimental_get_tracing_count()

/opt/conda/lib/python3.7/site-packages/tensorflow/python/eager/def_function.py in _call(self, *args, **kwds)
    869       # This is the first call of __call__, so we have to initialize.
    870       initializers = []
--> 871       self._initialize(args, kwds, add_initializers_to=initializers)
    872     finally:
    873       # At this point we know that the initialization is complete (or less

/opt/conda/lib/python3.7/site-packages/tensorflow/python/eager/def_function.py in _initialize(self, args, kwds, add_initializers_to)
    724     self._concrete_stateful_fn = (
    725         self._stateful_fn._get_concrete_function_internal_garbage_collected(  # pylint: disable=protected-access
--> 726             *args, **kwds))
    727 
    728     def invalid_creator_scope(*unused_args, **unused_kwds):

/opt/conda/lib/python3.7/site-packages/tensorflow/python/eager/function.py in _get_concrete_function_internal_garbage_collected(self, *args, **kwargs)
   2967       args, kwargs = None, None
   2968     with self._lock:
-> 2969       graph_function, _ = self._maybe_define_function(args, kwargs)
   2970     return graph_function
   2971 

/opt/conda/lib/python3.7/site-packages/tensorflow/python/eager/function.py in _maybe_define_function(self, args, kwargs)
   3359 
   3360           self._function_cache.missed.add(call_context_key)
-> 3361           graph_function = self._create_graph_function(args, kwargs)
   3362           self._function_cache.primary[cache_key] = graph_function
   3363 

/opt/conda/lib/python3.7/site-packages/tensorflow/python/eager/function.py in _create_graph_function(self, args, kwargs, override_flat_arg_shapes)
   3204             arg_names=arg_names,
   3205             override_flat_arg_shapes=override_flat_arg_shapes,
-> 3206             capture_by_value=self._capture_by_value),
   3207         self._function_attributes,
   3208         function_spec=self.function_spec,

/opt/conda/lib/python3.7/site-packages/tensorflow/python/framework/func_graph.py in func_graph_from_py_func(name, python_func, args, kwargs, signature, func_graph, autograph, autograph_options, add_control_dependencies, arg_names, op_return_value, collections, capture_by_value, override_flat_arg_shapes)
    988         _, original_func = tf_decorator.unwrap(python_func)
    989 
--> 990       func_outputs = python_func(*func_args, **func_kwargs)
    991 
    992       # invariant: `func_outputs` contains only Tensors, CompositeTensors,

/opt/conda/lib/python3.7/site-packages/tensorflow/python/eager/def_function.py in wrapped_fn(*args, **kwds)
    632             xla_context.Exit()
    633         else:
--> 634           out = weak_wrapped_fn().__wrapped__(*args, **kwds)
    635         return out
    636 

/opt/conda/lib/python3.7/site-packages/tensorflow/python/framework/func_graph.py in wrapper(*args, **kwargs)
    975           except Exception as e:  # pylint:disable=broad-except
    976             if hasattr(e, "ag_error_metadata"):
--> 977               raise e.ag_error_metadata.to_exception(e)
    978             else:
    979               raise

TypeError: in user code:

    /opt/conda/lib/python3.7/site-packages/tensorflow/python/keras/engine/training.py:805 train_function  *
        return step_function(self, iterator)

    TypeError: tf__Dirichlet_SOS() missing 1 required positional argument: 't'

I was wondering if you could kindly help me to fix this problem.

Ali-799 commented 3 years ago

Go to Dirichlet_SOS function and remove the remove parameter 't' from def Dirichlet_SOS(y, alpha, t). This isn't used anywhere in the loss function and calling the function without this parameter in model.compile, gives you an error..

9527-ly commented 3 years ago

When I remove the parameter t, I try to run this code. But I found that the running result is always the third type with the greatest probability. Does anyone know how to solve this problem? @Asad-799 @koo-ec @aamini