Open jS5t3r opened 11 months ago
It always predicts 464 for every sample...
import torch import pickle as pkl import time import numpy as np import cv2 import matplotlib.pyplot as plt import torchvision.models as models import torchvision.transforms as transforms def str2img(str_b): return cv2.imdecode(np.fromstring(str_b, np.uint8), cv2.IMREAD_COLOR) def load_pickle(path): begin_st = time.time() with open(path, 'rb') as f: print("Loading pickle object from {}".format(path)) v = pkl.load(f) print("=> Done ({:.4f} s)".format(time.time() - begin_st)) return v d = load_pickle('val224_compressed.pkl') img224 = 0 target224 = 0 for img, target in zip(d['data'], d['target']): img224 = str2img(img) target224 = target break normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) img_tensor = transforms.ToTensor()(img224) / 255. normalized_image = normalize(img_tensor) model = models.resnet18(pretrained=True).eval() pred = model(normalized_image.unsqueeze(0)) print(pred.argmax(1), target224)
It always predicts 464 for every sample...