Changelog
### 1.26.1
```
discovered after the 1.26.0 release. In addition, it adds new
functionality for detecting BLAS and LAPACK when building from source.
Highlights are:
- Improved detection of BLAS and LAPACK libraries for meson builds
- Pickle compatibility with the upcoming NumPy 2.0.
The 1.26.release series is the last planned minor release series before
NumPy 2.0. The Python versions supported by this release are 3.9-3.12.
Build system changes
Improved BLAS/LAPACK detection and control
Auto-detection for a number of BLAS and LAPACK is now implemented for
Meson. By default, the build system will try to detect MKL, Accelerate
(on macOS \>=13.3), OpenBLAS, FlexiBLAS, BLIS and reference BLAS/LAPACK.
Support for MKL was significantly improved, and support for FlexiBLAS
was added.
New command-line flags are available to further control the selection of
the BLAS and LAPACK libraries to build against.
To select a specific library, use the config-settings interface via
`pip` or `pypa/build`. E.g., to select `libblas`/`liblapack`, use:
$ pip install numpy -Csetup-args=-Dblas=blas -Csetup-args=-Dlapack=lapack
$ OR
$ python -m build . -Csetup-args=-Dblas=blas -Csetup-args=-Dlapack=lapack
This works not only for the libraries named above, but for any library
that Meson is able to detect with the given name through `pkg-config` or
CMake.
Besides `-Dblas` and `-Dlapack`, a number of other new flags are
available to control BLAS/LAPACK selection and behavior:
- `-Dblas-order` and `-Dlapack-order`: a list of library names to
search for in order, overriding the default search order.
- `-Duse-ilp64`: if set to `true`, use ILP64 (64-bit integer) BLAS and
LAPACK. Note that with this release, ILP64 support has been extended
to include MKL and FlexiBLAS. OpenBLAS and Accelerate were supported
in previous releases.
- `-Dallow-noblas`: if set to `true`, allow NumPy to build with its
internal (very slow) fallback routines instead of linking against an
external BLAS/LAPACK library. *The default for this flag may be
changed to \`\`true\`\` in a future 1.26.x release, however for
1.26.1 we\'d prefer to keep it as \`\`false\`\` because if failures
to detect an installed library are happening, we\'d like a bug
report for that, so we can quickly assess whether the new
auto-detection machinery needs further improvements.*
- `-Dmkl-threading`: to select the threading layer for MKL. There are
four options: `seq`, `iomp`, `gomp` and `tbb`. The default is
`auto`, which selects from those four as appropriate given the
version of MKL selected.
- `-Dblas-symbol-suffix`: manually select the symbol suffix to use for
the library - should only be needed for linking against libraries
built in a non-standard way.
New features
`numpy._core` submodule stubs
`numpy._core` submodule stubs were added to provide compatibility with
pickled arrays created using NumPy 2.0 when running Numpy 1.26.
Contributors
A total of 13 people contributed to this release. People with a \"+\" by
their names contributed a patch for the first time.
- Andrew Nelson
- Anton Prosekin +
- Charles Harris
- Chongyun Lee +
- Ivan A. Melnikov +
- Jake Lishman +
- Mahder Gebremedhin +
- Mateusz Sokół
- Matti Picus
- Munira Alduraibi +
- Ralf Gommers
- Rohit Goswami
- Sayed Adel
Pull requests merged
A total of 20 pull requests were merged for this release.
- [24742](https://github.com/numpy/numpy/pull/24742): MAINT: Update cibuildwheel version
- [24748](https://github.com/numpy/numpy/pull/24748): MAINT: fix version string in wheels built with setup.py
- [24771](https://github.com/numpy/numpy/pull/24771): BLD, BUG: Fix build failure for host flags e.g. `-march=native`\...
- [24773](https://github.com/numpy/numpy/pull/24773): DOC: Updated the f2py docs to remove a note on -fimplicit-none
- [24776](https://github.com/numpy/numpy/pull/24776): BUG: Fix SIMD f32 trunc test on s390x when baseline is none
- [24785](https://github.com/numpy/numpy/pull/24785): BLD: add libquadmath to licences and other tweaks (#24753)
- [24786](https://github.com/numpy/numpy/pull/24786): MAINT: Activate `use-compute-credits` for Cirrus.
- [24803](https://github.com/numpy/numpy/pull/24803): BLD: updated vendored-meson/meson for mips64 fix
- [24804](https://github.com/numpy/numpy/pull/24804): MAINT: fix licence path win
- [24813](https://github.com/numpy/numpy/pull/24813): BUG: Fix order of Windows OS detection macros.
- [24831](https://github.com/numpy/numpy/pull/24831): BUG, SIMD: use scalar cmul on bad Apple clang x86_64 (#24828)
- [24840](https://github.com/numpy/numpy/pull/24840): BUG: Fix DATA statements for f2py
- [24870](https://github.com/numpy/numpy/pull/24870): API: Add `NumpyUnpickler` for backporting
- [24872](https://github.com/numpy/numpy/pull/24872): MAINT: Xfail test failing on PyPy.
- [24879](https://github.com/numpy/numpy/pull/24879): BLD: fix math func feature checks, fix FreeBSD build, add CI\...
- [24899](https://github.com/numpy/numpy/pull/24899): ENH: meson: implement BLAS/LAPACK auto-detection and many CI\...
- [24902](https://github.com/numpy/numpy/pull/24902): DOC: add a 1.26.1 release notes section for BLAS/LAPACK build\...
- [24906](https://github.com/numpy/numpy/pull/24906): MAINT: Backport `numpy._core` stubs. Remove `NumpyUnpickler`
- [24911](https://github.com/numpy/numpy/pull/24911): MAINT: Bump pypa/cibuildwheel from 2.16.1 to 2.16.2
- [24912](https://github.com/numpy/numpy/pull/24912): BUG: loongarch doesn\'t use REAL(10)
Checksums
MD5
bda38de1a047dd9fdddae16c0d9fb358 numpy-1.26.1-cp310-cp310-macosx_10_9_x86_64.whl
196d2e39047da64ab28e177760c95461 numpy-1.26.1-cp310-cp310-macosx_11_0_arm64.whl
9d25010a7bf50e624d2fed742790afbd numpy-1.26.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
9b22fa3d030807f0708007d9c0659f65 numpy-1.26.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
eea626b8b930acb4b32302a9e95714f5 numpy-1.26.1-cp310-cp310-musllinux_1_1_x86_64.whl
3c40ef068f50d2ac2913c5b9fa1233fa numpy-1.26.1-cp310-cp310-win32.whl
315c251d2f284af25761a37ce6dd4d10 numpy-1.26.1-cp310-cp310-win_amd64.whl
ebdd5046937df50e9f54a6d38c5775dd numpy-1.26.1-cp311-cp311-macosx_10_9_x86_64.whl
682f9beebe8547f205d6cdc8ff96a984 numpy-1.26.1-cp311-cp311-macosx_11_0_arm64.whl
e86da9b6040ea88b3835c4d8f8578658 numpy-1.26.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
ebcb6cf7f64454215e29d8a89829c8e1 numpy-1.26.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
a8c89e13dc9a63712104e2fb06fb63a6 numpy-1.26.1-cp311-cp311-musllinux_1_1_x86_64.whl
339795930404988dbc664ff4cc72b399 numpy-1.26.1-cp311-cp311-win32.whl
4ef5e1bdd7726c19615843f5ac72e618 numpy-1.26.1-cp311-cp311-win_amd64.whl
3aad6bc72db50e9cc88aa5813e8f35bd numpy-1.26.1-cp312-cp312-macosx_10_9_x86_64.whl
fd62f65ae7798dbda9a3f7af7aa5c8db numpy-1.26.1-cp312-cp312-macosx_11_0_arm64.whl
104d939e080f1baf0a56aed1de0e79e3 numpy-1.26.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
c44b56c96097f910bbec1420abcf3db5 numpy-1.26.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
1dce230368ae5fc47dd0fe8de8ff771d numpy-1.26.1-cp312-cp312-musllinux_1_1_x86_64.whl
d93338e7d60e1d294ca326450e99806b numpy-1.26.1-cp312-cp312-win32.whl
a1832f46521335c1ee4c56dbf12e600b numpy-1.26.1-cp312-cp312-win_amd64.whl
946fbb0b6caca9258985495532d3f9ab numpy-1.26.1-cp39-cp39-macosx_10_9_x86_64.whl
78c2ab13d395d67d90bcd6583a6f61a8 numpy-1.26.1-cp39-cp39-macosx_11_0_arm64.whl
0a9d80d8b646abf4ffe51fff3e075d10 numpy-1.26.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
0229ba8145d4f58500873b540a55d60e numpy-1.26.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
9179fc57c03260374c86e18867c24463 numpy-1.26.1-cp39-cp39-musllinux_1_1_x86_64.whl
246a3103fdbe5d891d7a8aee28875a26 numpy-1.26.1-cp39-cp39-win32.whl
4589dcb7f754fade6ea3946416bee638 numpy-1.26.1-cp39-cp39-win_amd64.whl
3af340d5487a6c045f00fe5eb889957c numpy-1.26.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
28aece4f1ceb92ec463aa353d4a91c8b numpy-1.26.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
bbd0461a1e31017b05509e9971b3478e numpy-1.26.1-pp39-pypy39_pp73-win_amd64.whl
2d770f4c281d405b690c4bcb3dbe99e2 numpy-1.26.1.tar.gz
SHA256
82e871307a6331b5f09efda3c22e03c095d957f04bf6bc1804f30048d0e5e7af numpy-1.26.1-cp310-cp310-macosx_10_9_x86_64.whl
cdd9ec98f0063d93baeb01aad472a1a0840dee302842a2746a7a8e92968f9575 numpy-1.26.1-cp310-cp310-macosx_11_0_arm64.whl
d78f269e0c4fd365fc2992c00353e4530d274ba68f15e968d8bc3c69ce5f5244 numpy-1.26.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
8ab9163ca8aeb7fd32fe93866490654d2f7dda4e61bc6297bf72ce07fdc02f67 numpy-1.26.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
78ca54b2f9daffa5f323f34cdf21e1d9779a54073f0018a3094ab907938331a2 numpy-1.26.1-cp310-cp310-musllinux_1_1_x86_64.whl
d1cfc92db6af1fd37a7bb58e55c8383b4aa1ba23d012bdbba26b4bcca45ac297 numpy-1.26.1-cp310-cp310-win32.whl
d2984cb6caaf05294b8466966627e80bf6c7afd273279077679cb010acb0e5ab numpy-1.26.1-cp310-cp310-win_amd64.whl
cd7837b2b734ca72959a1caf3309457a318c934abef7a43a14bb984e574bbb9a numpy-1.26.1-cp311-cp311-macosx_10_9_x86_64.whl
1c59c046c31a43310ad0199d6299e59f57a289e22f0f36951ced1c9eac3665b9 numpy-1.26.1-cp311-cp311-macosx_11_0_arm64.whl
d58e8c51a7cf43090d124d5073bc29ab2755822181fcad978b12e144e5e5a4b3 numpy-1.26.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
6081aed64714a18c72b168a9276095ef9155dd7888b9e74b5987808f0dd0a974 numpy-1.26.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
97e5d6a9f0702c2863aaabf19f0d1b6c2628fbe476438ce0b5ce06e83085064c numpy-1.26.1-cp311-cp311-musllinux_1_1_x86_64.whl
b9d45d1dbb9de84894cc50efece5b09939752a2d75aab3a8b0cef6f3a35ecd6b numpy-1.26.1-cp311-cp311-win32.whl
3649d566e2fc067597125428db15d60eb42a4e0897fc48d28cb75dc2e0454e53 numpy-1.26.1-cp311-cp311-win_amd64.whl
1d1bd82d539607951cac963388534da3b7ea0e18b149a53cf883d8f699178c0f numpy-1.26.1-cp312-cp312-macosx_10_9_x86_64.whl
afd5ced4e5a96dac6725daeb5242a35494243f2239244fad10a90ce58b071d24 numpy-1.26.1-cp312-cp312-macosx_11_0_arm64.whl
a03fb25610ef560a6201ff06df4f8105292ba56e7cdd196ea350d123fc32e24e numpy-1.26.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
dcfaf015b79d1f9f9c9fd0731a907407dc3e45769262d657d754c3a028586124 numpy-1.26.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
e509cbc488c735b43b5ffea175235cec24bbc57b227ef1acc691725beb230d1c numpy-1.26.1-cp312-cp312-musllinux_1_1_x86_64.whl
af22f3d8e228d84d1c0c44c1fbdeb80f97a15a0abe4f080960393a00db733b66 numpy-1.26.1-cp312-cp312-win32.whl
9f42284ebf91bdf32fafac29d29d4c07e5e9d1af862ea73686581773ef9e73a7 numpy-1.26.1-cp312-cp312-win_amd64.whl
bb894accfd16b867d8643fc2ba6c8617c78ba2828051e9a69511644ce86ce83e numpy-1.26.1-cp39-cp39-macosx_10_9_x86_64.whl
e44ccb93f30c75dfc0c3aa3ce38f33486a75ec9abadabd4e59f114994a9c4617 numpy-1.26.1-cp39-cp39-macosx_11_0_arm64.whl
9696aa2e35cc41e398a6d42d147cf326f8f9d81befcb399bc1ed7ffea339b64e numpy-1.26.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
a5b411040beead47a228bde3b2241100454a6abde9df139ed087bd73fc0a4908 numpy-1.26.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
1e11668d6f756ca5ef534b5be8653d16c5352cbb210a5c2a79ff288e937010d5 numpy-1.26.1-cp39-cp39-musllinux_1_1_x86_64.whl
d1d2c6b7dd618c41e202c59c1413ef9b2c8e8a15f5039e344af64195459e3104 numpy-1.26.1-cp39-cp39-win32.whl
59227c981d43425ca5e5c01094d59eb14e8772ce6975d4b2fc1e106a833d5ae2 numpy-1.26.1-cp39-cp39-win_amd64.whl
06934e1a22c54636a059215d6da99e23286424f316fddd979f5071093b648668 numpy-1.26.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
76ff661a867d9272cd2a99eed002470f46dbe0943a5ffd140f49be84f68ffc42 numpy-1.26.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
6965888d65d2848e8768824ca8288db0a81263c1efccec881cb35a0d805fcd2f numpy-1.26.1-pp39-pypy39_pp73-win_amd64.whl
c8c6c72d4a9f831f328efb1312642a1cafafaa88981d9ab76368d50d07d93cbe numpy-1.26.1.tar.gz
```
### 1.26.0
```
The NumPy 1.26.0 release is a continuation of the 1.25.x release cycle
with the addition of Python 3.12.0 support. Python 3.12 dropped
distutils, consequently supporting it required finding a replacement for
the setup.py/distutils based build system NumPy was using. We have
chosen to use the Meson build system instead, and this is the first
NumPy release supporting it. This is also the first release that
supports Cython 3.0 in addition to retaining 0.29.X compatibility.
Supporting those two upgrades was a large project, over 100 files have
been touched in this release. The changelog doesn\'t capture the full
extent of the work, special thanks to Ralf Gommers, Sayed Adel, Stéfan
van der Walt, and Matti Picus who did much of the work in the main
development branch.
The highlights of this release are:
- Python 3.12.0 support.
- Cython 3.0.0 compatibility.
- Use of the Meson build system
- Updated SIMD support
The Python versions supported in this release are 3.9-3.12.
Build system changes
In this release, NumPy has switched to Meson as the build system and
meson-python as the build backend. Installing NumPy or building a wheel
can be done with standard tools like `pip` and `pypa/build`. The
following are supported:
- Regular installs: `pip install numpy` or (in a cloned repo)
`pip install .`
- Building a wheel: `python -m build` (preferred), or `pip wheel .`
- Editable installs: `pip install -e . --no-build-isolation`
- Development builds through the custom CLI implemented with
[spin](https://github.com/scientific-python/spin): `spin build`.
All the regular `pip` and `pypa/build` flags (e.g.,
`--no-build-isolation`) should work as expected.
NumPy-specific build customization
Many of the NumPy-specific ways of customizing builds have changed. The
`NPY_*` environment variables which control BLAS/LAPACK, SIMD,
threading, and other such options are no longer supported, nor is a
`site.cfg` file to select BLAS and LAPACK. Instead, there are
command-line flags that can be passed to the build via `pip`/`build`\'s
config-settings interface. These flags are all listed in the
`meson_options.txt` file in the root of the repo. Detailed documented
will be available before the final 1.26.0 release; for now please see
[the SciPy \"building from source\"docs](http://scipy.github.io/devdocs/building/index.html) since most
build customization works in an almost identical way in SciPy as it does
in NumPy.
Build dependencies
While the runtime dependencies of NumPy have not changed, the build
dependencies have. Because we temporarily vendor Meson and meson-python,
there are several new dependencies - please see the `[build-system]`
section of `pyproject.toml` for details.
Troubleshooting
This build system change is quite large. In case of unexpected issues,
it is still possible to use a `setup.py`-based build as a temporary
workaround (on Python 3.9-3.11, not 3.12), by copying
`pyproject.toml.setuppy` to `pyproject.toml`. However, please open an
issue with details on the NumPy issue tracker. We aim to phase out
`setup.py` builds as soon as possible, and therefore would like to see
all potential blockers surfaced early on in the 1.26.0 release cycle.
Contributors
A total of 11 people contributed to this release. People with a \"+\" by
their names contributed a patch for the first time.
- Bas van Beek
- Charles Harris
- Matti Picus
- Melissa Weber Mendonça
- Ralf Gommers
- Sayed Adel
- Sebastian Berg
- Stefan van der Walt
- Tyler Reddy
- Warren Weckesser
Pull requests merged
A total of 18 pull requests were merged for this release.
- [24305](https://github.com/numpy/numpy/pull/24305): MAINT: Prepare 1.26.x branch for development
- [24308](https://github.com/numpy/numpy/pull/24308): MAINT: Massive update of files from main for numpy 1.26
- [24322](https://github.com/numpy/numpy/pull/24322): CI: fix wheel builds on the 1.26.x branch
- [24326](https://github.com/numpy/numpy/pull/24326): BLD: update openblas to newer version
- [24327](https://github.com/numpy/numpy/pull/24327): TYP: Trim down the `_NestedSequence.__getitem__` signature
- [24328](https://github.com/numpy/numpy/pull/24328): BUG: fix choose refcount leak
- [24337](https://github.com/numpy/numpy/pull/24337): TST: fix running the test suite in builds without BLAS/LAPACK
- [24338](https://github.com/numpy/numpy/pull/24338): BUG: random: Fix generation of nan by dirichlet.
- [24340](https://github.com/numpy/numpy/pull/24340): MAINT: Dependabot updates from main
- [24342](https://github.com/numpy/numpy/pull/24342): MAINT: Add back NPY_RUN_MYPY_IN_TESTSUITE=1
- [24353](https://github.com/numpy/numpy/pull/24353): MAINT: Update `extbuild.py` from main.
- [24356](https://github.com/numpy/numpy/pull/24356): TST: fix distutils tests for deprecations in recent setuptools\...
- [24375](https://github.com/numpy/numpy/pull/24375): MAINT: Update cibuildwheel to version 2.15.0
- [24381](https://github.com/numpy/numpy/pull/24381): MAINT: Fix codespaces setup.sh script
- [24403](https://github.com/numpy/numpy/pull/24403): ENH: Vendor meson for multi-target build support
- [24404](https://github.com/numpy/numpy/pull/24404): BLD: vendor meson-python to make the Windows builds with SIMD\...
- [24405](https://github.com/numpy/numpy/pull/24405): BLD, SIMD: The meson CPU dispatcher implementation
- [24406](https://github.com/numpy/numpy/pull/24406): MAINT: Remove versioneer
Checksums
MD5
875d02016f215f8ce2513453393f0089 numpy-1.26.0b1-cp310-cp310-macosx_10_9_x86_64.whl
7df1856729096fbbbbb82b58c1695810 numpy-1.26.0b1-cp310-cp310-macosx_11_0_arm64.whl
928037510906572ecadb154b8089853f numpy-1.26.0b1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
93fb7c8a0e7af169c9bf42d8bfa17c2c numpy-1.26.0b1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
a865069d224bf3830671de8e1f374344 numpy-1.26.0b1-cp310-cp310-musllinux_1_1_x86_64.whl
c53d1d8cb653fc08bd3f931e4c965430 numpy-1.26.0b1-cp310-cp310-win_amd64.whl
c7e212fbb7e64231747c6c8aac0f8678 numpy-1.26.0b1-cp311-cp311-macosx_10_9_x86_64.whl
f2df03cdaee283c1f7486d2f66e497dd numpy-1.26.0b1-cp311-cp311-macosx_11_0_arm64.whl
8af359b78166474b7a621a482f3073fd numpy-1.26.0b1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
4eec2761b87ccd43028697410ed8909d numpy-1.26.0b1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
d9f0b03e455e9e99bdbe69e2e729c197 numpy-1.26.0b1-cp311-cp311-musllinux_1_1_x86_64.whl
dd1c5e4492988e2b3641602b295e7de3 numpy-1.26.0b1-cp311-cp311-win_amd64.whl
88e35ab901c8315ccdb172abc0d2350c numpy-1.26.0b1-cp312-cp312-macosx_10_9_x86_64.whl
ad426a4203844eaa8de6b519e94dc2c0 numpy-1.26.0b1-cp312-cp312-macosx_11_0_arm64.whl
2e0e7a297de88cfe930c205b1ab8fdb0 numpy-1.26.0b1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
5d4ea12ab53e506a9887ab8a587f68f6 numpy-1.26.0b1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
1b3c3a80d2fb928b753545ded60312f3 numpy-1.26.0b1-cp312-cp312-musllinux_1_1_x86_64.whl
e27356122ee42d84f6965ac802792bc3 numpy-1.26.0b1-cp312-cp312-win_amd64.whl
1cc0d71476548fa30c27a542e3c3f9bf numpy-1.26.0b1-cp39-cp39-macosx_10_9_x86_64.whl
ec4882af449c1754cc7af84a82305aed numpy-1.26.0b1-cp39-cp39-macosx_11_0_arm64.whl
142493180019de1ec22c4510bf650366 numpy-1.26.0b1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
4a0c76b75fa36c54c0d2a9107c838910 numpy-1.26.0b1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
cb4d1c3b95e3a2662f94475b4b525da0 numpy-1.26.0b1-cp39-cp39-musllinux_1_1_x86_64.whl
afa3f60467530e022eb1a584a8c48f84 numpy-1.26.0b1-cp39-cp39-win_amd64.whl
35c77e2f2b25225ae62354f91c26a693 numpy-1.26.0b1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
1986181def7286ae37ced5df7c0ca312 numpy-1.26.0b1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
e013942d0d71cb6a680afa89c9aa5259 numpy-1.26.0b1-pp39-pypy39_pp73-win_amd64.whl
3268568cee06327fa34175aa3805829d numpy-1.26.0b1.tar.gz
SHA256
9a74361204dc604ba53916ed55aef0ca73e7aa3d0b7e47e1c28aece8c2ad4f59 numpy-1.26.0b1-cp310-cp310-macosx_10_9_x86_64.whl
ab9e86bb7c9d3e009945b24a92318ff5d8c245e0e0aaaa765825c4561c292d53 numpy-1.26.0b1-cp310-cp310-macosx_11_0_arm64.whl
b0b73599c80b29dfa7f812cb2e8738ce3f058b413e9f2f478e3cc4e038bb8f8e numpy-1.26.0b1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
4a6d4c99396c57e02b0181f01ba42b482f327774057e51fb7fb390a130c95cff numpy-1.26.0b1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
02af7482f34aeb9658ece615c922942f1a3908c449a9a6cd9f33fa233ce486d4 numpy-1.26.0b1-cp310-cp310-musllinux_1_1_x86_64.whl
5a8f04e957259ef93a1e4a29da0b64d49ee842af456257bbb7253925cfe2f7bd numpy-1.26.0b1-cp310-cp310-win_amd64.whl
f71e10402e705aaa5908464e489d38e6583c48e40a4721f83195772178c7da9f numpy-1.26.0b1-cp311-cp311-macosx_10_9_x86_64.whl
94d5572fea8dca0fa929da9d17fa49e525ceee1e59b04372dfa5bd8a5f688f5f numpy-1.26.0b1-cp311-cp311-macosx_11_0_arm64.whl
1f88e6fe42b0d6418e53332e525b299762dbd9e33055d2e0398e6298da5b0cc9 numpy-1.26.0b1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
c466707e5ce5a44caadb85fd672a5ce0bfc060012df465771e7b10506e1e5dad numpy-1.26.0b1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
16313a28cf703ae722b3ac139809360ffef81a45e758f196e538be3bcbee85c9 numpy-1.26.0b1-cp311-cp311-musllinux_1_1_x86_64.whl
ea85e8e297af49d30830177ecb0c54d1cbca051e4306161f3ceabfa66560b17c numpy-1.26.0b1-cp311-cp311-win_amd64.whl
321a063fabc302931029f831f284cf43c301fdeead1b15df2f8aa87673294d4d numpy-1.26.0b1-cp312-cp312-macosx_10_9_x86_64.whl
dc36a9e8df48b72dad668d6f4036ed477d8bc2cb1f7a23b688e8e8057afdfee3 numpy-1.26.0b1-cp312-cp312-macosx_11_0_arm64.whl
3c6c5804671fa1697e3d0cbc608a65c55794fb6682f4e04e9f6d65d0ddfc47c7 numpy-1.26.0b1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
3aa806da215e9c10ba89e9037a69c7a56367e059615679ef1a5cf937eedfbf61 numpy-1.26.0b1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
b66135c02ee55f9113dce3c8c5130b5feaead8767cd2c7ad36547a3d5e264230 numpy-1.26.0b1-cp312-cp312-musllinux_1_1_x86_64.whl
87f2799f475e9e7aee69254dfe357975b163d409550d4641a0bca4cb4f64b725 numpy-1.26.0b1-cp312-cp312-win_amd64.whl
2b258f67ca4a8245c74470da66a87684ddb3f06dde98760efc7ca792a44ee254 numpy-1.26.0b1-cp39-cp39-macosx_10_9_x86_64.whl
a31d9109ffed9fc5566e73346a076fffbc7db00e626579ae4d5dfec933b29bfc numpy-1.26.0b1-cp39-cp39-macosx_11_0_arm64.whl
18e29ab806ec5e0b05df900d44b3b257a5901c32fc3ddaeb818c520cd9279b4e numpy-1.26.0b1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
216b47882877ea5272f279c08bf7e42935728f35c6db2e4843b37db7b29ce016 numpy-1.26.0b1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
eea337d6d5ab2b6eb657b3f18e8b57a280f16fb5f94df484d9c1a8d3450d9ae9 numpy-1.26.0b1-cp39-cp39-musllinux_1_1_x86_64.whl
db698c9008217c54a8005ea58bd5836241d7b519c8bb16a698a1b4ec4ca296a8 numpy-1.26.0b1-cp39-cp39-win_amd64.whl
f250b3099649137f1021f8f95a9404273bcb7539f0bef6d6cf2c91260285edc4 numpy-1.26.0b1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
22584a41b1be30543dd8c030affc90d8cb7ec19a56fda7f27fc33f64f8b0fbaa numpy-1.26.0b1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
8aefe8ab1228e00146e5ae88290c7fdb8221aef45b357aed7f3dff6ac3b3b25a numpy-1.26.0b1-pp39-pypy39_pp73-win_amd64.whl
c67eea90827e1e9aa220a3fc380ce8776428deba8ac9e7c931ce7b69e8dce115 numpy-1.26.0b1.tar.gz
```
### 1.25.2
```
discovered after the 1.25.1 release. This is the last planned release in
the 1.25.x series, the next release will be 1.26.0, which will use the
meson build system and support Python 3.12. The Python versions
supported by this release are 3.9-3.11.
Contributors
A total of 13 people contributed to this release. People with a \"+\" by
their names contributed a patch for the first time.
- Aaron Meurer
- Andrew Nelson
- Charles Harris
- Kevin Sheppard
- Matti Picus
- Nathan Goldbaum
- Peter Hawkins
- Ralf Gommers
- Randy Eckenrode +
- Sam James +
- Sebastian Berg
- Tyler Reddy
- dependabot\[bot\]
Pull requests merged
A total of 19 pull requests were merged for this release.
- [24148](https://github.com/numpy/numpy/pull/24148): MAINT: prepare 1.25.x for further development
- [24174](https://github.com/numpy/numpy/pull/24174): ENH: Improve clang-cl compliance
- [24179](https://github.com/numpy/numpy/pull/24179): MAINT: Upgrade various build dependencies.
- [24182](https://github.com/numpy/numpy/pull/24182): BLD: use `-ftrapping-math` with Clang on macOS
- [24183](https://github.com/numpy/numpy/pull/24183): BUG: properly handle negative indexes in ufunc_at fast path
- [24184](https://github.com/numpy/numpy/pull/24184): BUG: PyObject_IsTrue and PyObject_Not error handling in setflags
- [24185](https://github.com/numpy/numpy/pull/24185): BUG: histogram small range robust
- [24186](https://github.com/numpy/numpy/pull/24186): MAINT: Update meson.build files from main branch
- [24234](https://github.com/numpy/numpy/pull/24234): MAINT: exclude min, max and round from `np.__all__`
- [24241](https://github.com/numpy/numpy/pull/24241): MAINT: Dependabot updates
- [24242](https://github.com/numpy/numpy/pull/24242): BUG: Fix the signature for np.array_api.take
- [24243](https://github.com/numpy/numpy/pull/24243): BLD: update OpenBLAS to an intermeidate commit
- [24244](https://github.com/numpy/numpy/pull/24244): BUG: Fix reference count leak in str(scalar).
- [24245](https://github.com/numpy/numpy/pull/24245): BUG: fix invalid function pointer conversion error
- [24255](https://github.com/numpy/numpy/pull/24255): BUG: Factor out slow `getenv` call used for memory policy warning
- [24292](https://github.com/numpy/numpy/pull/24292): CI: correct URL in cirrus.star
- [24293](https://github.com/numpy/numpy/pull/24293): BUG: Fix C types in scalartypes
- [24294](https://github.com/numpy/numpy/pull/24294): BUG: do not modify the input to ufunc_at
- [24295](https://github.com/numpy/numpy/pull/24295): BUG: Further fixes to indexing loop and added tests
Checksums
MD5
33518ccb4da8ee11f1dee4b9fef1e468 numpy-1.25.2-cp310-cp310-macosx_10_9_x86_64.whl
b5cb0c3b33ef6d93ec2888f25b065636 numpy-1.25.2-cp310-cp310-macosx_11_0_arm64.whl
ae027dd38bd73f09c07220b2f516f148 numpy-1.25.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
88cf69dc3c0d293492c4c7e75dccf3d8 numpy-1.25.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
3e4e3ad02375ba71ae2cd05ccd97aba4 numpy-1.25.2-cp310-cp310-musllinux_1_1_x86_64.whl
f52bb644682deb26c35ddec77198b65c numpy-1.25.2-cp310-cp310-win32.whl
4944cf36652be7560a6bcd0d5d56e8ea numpy-1.25.2-cp310-cp310-win_amd64.whl
5a56e639defebb7b871c8c5613960ca3 numpy-1.25.2-cp311-cp311-macosx_10_9_x86_64.whl
3988b96944e7218e629255214f2598bd numpy-1.25.2-cp311-cp311-macosx_11_0_arm64.whl
302d65015ddd908a862fb3761a2a0363 numpy-1.25.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
e54a2e23272d1c5e5b278bd7e304c948 numpy-1.25.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
961d390e8ccaf11b1b0d6200d2c8b1c0 numpy-1.25.2-cp311-cp311-musllinux_1_1_x86_64.whl
e113865b90f97079d344100c41226fbe numpy-1.25.2-cp311-cp311-win32.whl
834a147aa1adaec97655018b882232bd numpy-1.25.2-cp311-cp311-win_amd64.whl
fb55f93a8033bde854c8a2b994045686 numpy-1.25.2-cp39-cp39-macosx_10_9_x86_64.whl
d96e754217d29bf045e082b695667e62 numpy-1.25.2-cp39-cp39-macosx_11_0_arm64.whl
beab540edebecbb257e482dd9e498b44 numpy-1.25.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
e0d608c9e09cd8feba48567586cfefc0 numpy-1.25.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
fe1fc32c8bb005ca04b8f10ebdcff6dd numpy-1.25.2-cp39-cp39-musllinux_1_1_x86_64.whl
41df58a9935c8ed869c92307c95f02eb numpy-1.25.2-cp39-cp39-win32.whl
a4371272c64493beb8b04ac46c4c1521 numpy-1.25.2-cp39-cp39-win_amd64.whl
bbe051cbd5f8661dd054277f0b0f0c3d numpy-1.25.2-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
3f68e6b4af6922989dc0133e37db34ee numpy-1.25.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
fc89421b79e8800240999d3a1d06a4d2 numpy-1.25.2-pp39-pypy39_pp73-win_amd64.whl
cee1996a80032d47bdf1d9d17249c34e numpy-1.25.2.tar.gz
SHA256
db3ccc4e37a6873045580d413fe79b68e47a681af8db2e046f1dacfa11f86eb3 numpy-1.25.2-cp310-cp310-macosx_10_9_x86_64.whl
90319e4f002795ccfc9050110bbbaa16c944b1c37c0baeea43c5fb881693ae1f numpy-1.25.2-cp310-cp310-macosx_11_0_arm64.whl
dfe4a913e29b418d096e696ddd422d8a5d13ffba4ea91f9f60440a3b759b0187 numpy-1.25.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
f08f2e037bba04e707eebf4bc934f1972a315c883a9e0ebfa8a7756eabf9e357 numpy-1.25.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
bec1e7213c7cb00d67093247f8c4db156fd03075f49876957dca4711306d39c9 numpy-1.25.2-cp310-cp310-musllinux_1_1_x86_64.whl
7dc869c0c75988e1c693d0e2d5b26034644399dd929bc049db55395b1379e044 numpy-1.25.2-cp310-cp310-win32.whl
834b386f2b8210dca38c71a6e0f4fd6922f7d3fcff935dbe3a570945acb1b545 numpy-1.25.2-cp310-cp310-win_amd64.whl
c5462d19336db4560041517dbb7759c21d181a67cb01b36ca109b2ae37d32418 numpy-1.25.2-cp311-cp311-macosx_10_9_x86_64.whl
c5652ea24d33585ea39eb6a6a15dac87a1206a692719ff45d53c5282e66d4a8f numpy-1.25.2-cp311-cp311-macosx_11_0_arm64.whl
0d60fbae8e0019865fc4784745814cff1c421df5afee233db6d88ab4f14655a2 numpy-1.25.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
60e7f0f7f6d0eee8364b9a6304c2845b9c491ac706048c7e8cf47b83123b8dbf numpy-1.25.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
bb33d5a1cf360304754913a350edda36d5b8c5331a8237268c48f91253c3a364 numpy-1.25.2-cp311-cp311-musllinux_1_1_x86_64.whl
5883c06bb92f2e6c8181df7b39971a5fb436288db58b5a1c3967702d4278691d numpy-1.25.2-cp311-cp311-win32.whl
5c97325a0ba6f9d041feb9390924614b60b99209a71a69c876f71052521d42a4 numpy-1.25.2-cp311-cp311-win_amd64.whl
b79e513d7aac42ae918db3ad1341a015488530d0bb2a6abcbdd10a3a829ccfd3 numpy-1.25.2-cp39-cp39-macosx_10_9_x86_64.whl
eb942bfb6f84df5ce05dbf4b46673ffed0d3da59f13635ea9b926af3deb76926 numpy-1.25.2-cp39-cp39-macosx_11_0_arm64.whl
3e0746410e73384e70d286f93abf2520035250aad8c5714240b0492a7302fdca numpy-1.25.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
d7806500e4f5bdd04095e849265e55de20d8cc4b661b038957354327f6d9b295 numpy-1.25.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
8b77775f4b7df768967a7c8b3567e309f617dd5e99aeb886fa14dc1a0791141f numpy-1.25.2-cp39-cp39-musllinux_1_1_x86_64.whl
2792d23d62ec51e50ce4d4b7d73de8f67a2fd3ea710dcbc8563a51a03fb07b01 numpy-1.25.2-cp39-cp39-win32.whl
76b4115d42a7dfc5d485d358728cdd8719be33cc5ec6ec08632a5d6fca2ed380 numpy-1.25.2-cp39-cp39-win_amd64.whl
1a1329e26f46230bf77b02cc19e900db9b52f398d6722ca853349a782d4cff55 numpy-1.25.2-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
4c3abc71e8b6edba80a01a52e66d83c5d14433cbcd26a40c329ec7ed09f37901 numpy-1.25.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
1b9735c27cea5d995496f46a8b1cd7b408b3f34b6d50459d9ac8fe3a20cc17bf numpy-1.25.2-pp39-pypy39_pp73-win_amd64.whl
fd608e19c8d7c55021dffd43bfe5492fab8cc105cc8986f813f8c3c048b38760 numpy-1.25.2.tar.gz
```
### 1.25.1
```
discovered after the 1.25.0 release. The Python versions supported by
this release are 3.9-3.11.
Contributors
A total of 10 people contributed to this release. People with a \"+\" by
their names contributed a patch for the first time.
- Andrew Nelson
- Charles Harris
- Developer-Ecosystem-Engineering
- Hood Chatham
- Nathan Goldbaum
- Rohit Goswami
- Sebastian Berg
- Tim Paine +
- dependabot\[bot\]
- matoro +
Pull requests merged
A total of 14 pull requests were merged for this release.
- [23968](https://github.com/numpy/numpy/pull/23968): MAINT: prepare 1.25.x for further development
- [24036](https://github.com/numpy/numpy/pull/24036): BLD: Port long double identification to C for meson
- [24037](https://github.com/numpy/numpy/pull/24037): BUG: Fix reduction `return NULL` to be `goto fail`
- [24038](https://github.com/numpy/numpy/pull/24038): BUG: Avoid undefined behavior in array.astype()
- [24039](https://github.com/numpy/numpy/pull/24039): BUG: Ensure `__array_ufunc__` works without any kwargs passed
- [24117](https://github.com/numpy/numpy/pull/24117): MAINT: Pin urllib3 to avoid anaconda-client bug.
- [24118](https://github.com/numpy/numpy/pull/24118): TST: Pin pydantic\<2 in Pyodide workflow
- [24119](https://github.com/numpy/numpy/pull/24119): MAINT: Bump pypa/cibuildwheel from 2.13.0 to 2.13.1
- [24120](https://github.com/numpy/numpy/pull/24120): MAINT: Bump actions/checkout from 3.5.2 to 3.5.3
- [24122](https://github.com/numpy/numpy/pull/24122): BUG: Multiply or Divides using SIMD without a full vector can\...
- [24127](https://github.com/numpy/numpy/pull/24127): MAINT: testing for IS_MUSL closes #24074
- [24128](https://github.com/numpy/numpy/pull/24128): BUG: Only replace dtype temporarily if dimensions changed
- [24129](https://github.com/numpy/numpy/pull/24129): MAINT: Bump actions/setup-node from 3.6.0 to 3.7.0
- [24134](https://github.com/numpy/numpy/pull/24134): BUG: Fix private procedures in f2py modules
Checksums
MD5
d09d98643db31e892fad11b8c2b7af22 numpy-1.25.1-cp310-cp310-macosx_10_9_x86_64.whl
d5b8d3b0424e2af41018f35a087c4500 numpy-1.25.1-cp310-cp310-macosx_11_0_arm64.whl
1007893b1a8bfd97d445a63d29d33642 numpy-1.25.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
6a62d7a6cee310b41dc872aa7f3d7e8b numpy-1.25.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
e81f6264aecfa2269c5d29d10c362cbc numpy-1.25.1-cp310-cp310-musllinux_1_1_x86_64.whl
ab8ecd125ca86eac0b3ada67ab66dad6 numpy-1.25.1-cp310-cp310-win32.whl
5466bebeaafcc3d6e1b98858d77ff945 numpy-1.25.1-cp310-cp310-win_amd64.whl
f31b059256ae09b7b83df63f52d8371e numpy-1.25.1-cp311-cp311-macosx_10_9_x86_64.whl
099f74d654888869704469c321af845d numpy-1.25.1-cp311-cp311-macosx_11_0_arm64.whl
20d04dccd2bfca5cfd88780d1dc9a3f8 numpy-1.25.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
61dfd7c00638e83a7af59b86615ee9d2 numpy-1.25.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
4eb459c3d9479c4da2fdf20e4c4085d0 numpy-1.25.1-cp311-cp311-musllinux_1_1_x86_64.whl
5e84e797866c68ba65fa89a4bf4ba8ce numpy-1.25.1-cp311-cp311-win32.whl
87bb1633b2e8029dbfa1e59f7ab22625 numpy-1.25.1-cp311-cp311-win_amd64.whl
3fcf2eb5970d848a26abdff1b10228e7 numpy-1.25.1-cp39-cp39-macosx_10_9_x86_64.whl
d71e1cbe18fe05944219e5a5be1796bf numpy-1.25.1-cp39-cp39-macosx_11_0_arm64.whl
5b457e10834c991bca84aae7eaa49f34 numpy-1.25.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
5cbb4c2f2892fafdf6f34fcb37c9e743 numpy-1.25.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
7d9d1ae23cf5420652088bfe8e048d89 numpy-1.25.1-cp39-cp39-musllinux_1_1_x86_64.whl
7e5bed491b85f0d7c718d6809f9b3ed2 numpy-1.25.1-cp39-cp39-win32.whl
838e97b751bebadf47e2196b2c88ffa2 numpy-1.25.1-cp39-cp39-win_amd64.whl
9ba95d8d6004d9659d7728fe93f67be9 numpy-1.25.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
fbccb20254a2dc85bdec549a03b8eb56 numpy-1.25.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
95e36689e6dd078caf11e7e2a2d5f5f1 numpy-1.25.1-pp39-pypy39_pp73-win_amd64.whl
768d0ebf15e2242f4c7ca7565bb5dd3e numpy-1.25.1.tar.gz
SHA256
77d339465dff3eb33c701430bcb9c325b60354698340229e1dff97745e6b3efa numpy-1.25.1-cp310-cp310-macosx_10_9_x86_64.whl
d736b75c3f2cb96843a5c7f8d8ccc414768d34b0a75f466c05f3a739b406f10b numpy-1.25.1-cp310-cp310-macosx_11_0_arm64.whl
4a90725800caeaa160732d6b31f3f843ebd45d6b5f3eec9e8cc287e30f2805bf numpy-1.25.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
6c6c9261d21e617c6dc5eacba35cb68ec36bb72adcff0dee63f8fbc899362588 numpy-1.25.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
0def91f8af6ec4bb94c370e38c575855bf1d0be8a8fbfba42ef9c073faf2cf19 numpy-1.25.1-cp310-cp310-musllinux_1_1_x86_64.whl
fd67b306320dcadea700a8f79b9e671e607f8696e98ec255915c0c6d6b818503 numpy-1.25.1-cp310-cp310-win32.whl
c1516db588987450b85595586605742879e50dcce923e8973f79529651545b57 numpy-1.25.1-cp310-cp310-win_amd64.whl
6b82655dd8efeea69dbf85d00fca40013d7f503212bc5259056244961268b66e numpy-1.25.1-cp311-cp311-macosx_10_9_x86_64.whl
e8f6049c4878cb16960fbbfb22105e49d13d752d4d8371b55110941fb3b17800 numpy-1.25.1-cp311-cp311-macosx_11_0_arm64.whl
41a56b70e8139884eccb2f733c2f7378af06c82304959e174f8e7370af112e09 numpy-1.25.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
d5154b1a25ec796b1aee12ac1b22f414f94752c5f94832f14d8d6c9ac40bcca6 numpy-1.25.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
38eb6548bb91c421261b4805dc44def9ca1a6eef6444ce35ad1669c0f1a3fc5d numpy-1.25.1-cp311-cp311-musllinux_1_1_x86_64.whl
791f409064d0a69dd20579345d852c59822c6aa087f23b07b1b4e28ff5880fcb numpy-1.25.1-cp311-cp311-win32.whl
c40571fe966393b212689aa17e32ed905924120737194b5d5c1b20b9ed0fb171 numpy-1.25.1-cp311-cp311-win_amd64.whl
3d7abcdd85aea3e6cdddb59af2350c7ab1ed764397f8eec97a038ad244d2d105 numpy-1.25.1-cp39-cp39-macosx_10_9_x86_64.whl
1a180429394f81c7933634ae49b37b472d343cccb5bb0c4a575ac8bbc433722f numpy-1.25.1-cp39-cp39-macosx_11_0_arm64.whl
d412c1697c3853c6fc3cb9751b4915859c7afe6a277c2bf00acf287d56c4e625 numpy-1.25.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
20e1266411120a4f16fad8efa8e0454d21d00b8c7cee5b5ccad7565d95eb42dd numpy-1.25.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
f76aebc3358ade9eacf9bc2bb8ae589863a4f911611694103af05346637df1b7 numpy-1.25.1-cp39-cp39-musllinux_1_1_x86_64.whl
247d3ffdd7775bdf191f848be8d49100495114c82c2bd134e8d5d075fb386a1c numpy-1.25.1-cp39-cp39-win32.whl
1d5d3c68e443c90b38fdf8ef40e60e2538a27548b39b12b73132456847f4b631 numpy-1.25.1-cp39-cp39-win_amd64.whl
35a9527c977b924042170a0887de727cd84ff179e478481404c5dc66b4170009 numpy-1.25.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
0d3fe3dd0506a28493d82dc3cf254be8cd0d26f4008a417385cbf1ae95b54004 numpy-1.25.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
012097b5b0d00a11070e8f2e261128c44157a8689f7dedcf35576e525893f4fe numpy-1.25.1-pp39-pypy39_pp73-win_amd64.whl
9a3a9f3a61480cc086117b426a8bd86869c213fc4072e606f01c4e4b66eb92bf numpy-1.25.1.tar.gz
```
### 1.25.0
```
The NumPy 1.25.0 release continues the ongoing work to improve the
handling and promotion of dtypes, increase the execution speed, and
clarify the documentation. There has also been work to prepare for the
future NumPy 2.0.0 release, resulting in a large number of new and
expired deprecation. Highlights are:
- Support for MUSL, there are now MUSL wheels.
- Support the Fujitsu C/C++ compiler.
- Object arrays are now supported in einsum
- Support for inplace matrix multiplication (`=`).
We will be releasing a NumPy 1.26 when Python 3.12 comes out. That is
needed because distutils has been dropped by Python 3.12 and we will be
switching to using meson for future builds. The next mainline release
will be NumPy 2.0.0. We plan that the 2.0 series will still support
downstream projects built against earlier versions of NumPy.
The Python versions supported in this release are 3.9-3.11.
Deprecations
- `np.core.MachAr` is deprecated. It is private API. In names defined
in `np.core` should generally be considered private.
([gh-22638](https://github.com/numpy/numpy/pull/22638))
- `np.finfo(None)` is deprecated.
([gh-23011](https://github.com/numpy/numpy/pull/23011))
- `np.round_` is deprecated. Use `np.round` instead.
([gh-23302](https://github.com/numpy/numpy/pull/23302))
- `np.product` is deprecated. Use `np.prod` instead.
([gh-23314](https://github.com/numpy/numpy/pull/23314))
- `np.cumproduct` is deprecated. Use `np.cumprod` instead.
([gh-23314](https://github.com/numpy/numpy/pull/23314))
- `np.sometrue` is deprecated. Use `np.any` instead.
([gh-23314](https://github.com/numpy/numpy/pull/23314))
- `np.alltrue` is deprecated. Use `np.all` instead.
([gh-23314](https://github.com/numpy/numpy/pull/23314))
- Only ndim-0 arrays are treated as scalars. NumPy used to treat all
arrays of size 1 (e.g., `np.array([3.14])`) as scalars. In the
future, this will be limited to arrays of ndim 0 (e.g.,
`np.array(3.14)`). The following expressions will report a
deprecation warning:
python
a = np.array([3.14])
float(a) better: a[0] to get the numpy.float or a.item()
b = np.array([[3.14]])
c = numpy.random.rand(10)
c[0] = b better: c[0] = b[0, 0]
([gh-10615](https://github.com/numpy/numpy/pull/10615))
- `numpy.find_common_type` is now deprecated and its use
should be replaced with either `numpy.result_type` or
`numpy.promote_types`. Most users leave the second
`scalar_types` argument to `find_common_type` as `[]` in which case
`np.result_type` and `np.promote_types` are both faster and more
robust. When not using `scalar_types` the main difference is that
the replacement intentionally converts non-native byte-order to
native byte order. Further, `find_common_type` returns `object`
dtype rather than failing promotion. This leads to differences when
the inputs are not all numeric. Importantly, this also happens for
e.g. timedelta/datetime for which NumPy promotion rules are
currently sometimes surprising.
When the `scalar_types` argument is not `[]` things are more
complicated. In most cases, using `np.result_type` and passing the
Python values `0`, `0.0`, or `0j` has the same result as using
`int`, `float`, or `complex` in `scalar_types`.
When `scalar_types` is constructed, `np.result_type` is the correct
replacement and it may be passed scalar values like
`np.float32(0.0)`. Passing values other than 0, may lead to
value-inspecting behavior (which `np.find_common_type` never used
and NEP 50 may change in the future). The main possible change in
behavior in this case, is when the array types are signed integers
and scalar types are unsigned.
If you are unsure about how to replace a use of `scalar_types` or
when non-numeric dtypes are likely, please do not hesitate to open a
NumPy issue to ask for help.
([gh-22539](https://github.com/numpy/numpy/pull/22539))
Expired deprecations
- `np.core.machar` and `np.finfo.machar` have been removed.
([gh-22638](https://github.com/numpy/numpy/pull/22638))
- `+arr` will now raise an error when the dtype is not numeric (and
positive is undefined).
([gh-22998](https://github.com/numpy/numpy/pull/22998))
- A sequence must now be passed into the stacking family of functions
(`stack`, `vstack`, `hstack`, `dstack` and `column_stack`).
([gh-23019](https://github.com/numpy/numpy/pull/23019))
- `np.clip` now defaults to same-kind casting. Falling back to unsafe
casting was deprecated in NumPy 1.17.
([gh-23403](https://github.com/numpy/numpy/pull/23403))
- `np.clip` will now propagate `np.nan` values passed as `min` or
`max`. Previously, a scalar NaN was usually ignored. This was
deprecated in NumPy 1.17.
([gh-23403](https://github.com/numpy/numpy/pull/23403))
- The `np.dual` submodule has been removed.
([gh-23480](https://github.com/numpy/numpy/pull/23480))
- NumPy now always ignores sequence behavior for an array-like
(defining one of the array protocols). (Deprecation started NumPy
1.20)
([gh-23660](https://github.com/numpy/numpy/pull/23660))
- The niche `FutureWarning` when casting to a subarray dtype in
`astype` or the array creation functions such as `asarray` is now
finalized. The behavior is now always the same as if the subarray
dtype was wrapped into a single field (which was the workaround,
previously). (FutureWarning since NumPy 1.20)
([gh-23666](https://github.com/numpy/numpy/pull/23666))
- `==` and `!=` warnings have been finalized. The `==` and `!=`
operators on arrays now always:
- raise errors that occur during comparisons such as when the
arrays have incompatible shapes
(`np.array([1, 2]) == np.array([1, 2, 3])`).
- return an array of all `True` or all `False` when values are
fundamentally not comparable (e.g. have different dtypes). An
example is `np.array(["a"]) == np.array([1])`.
This mimics the Python behavior of returning `False` and `True`
when comparing incompatible types like `"a" == 1` and
`"a" != 1`. For a long time these gave `DeprecationWarning` or
`FutureWarning`.
([gh-22707](https://github.com/numpy/numpy/pull/22707))
- Nose support has been removed. NumPy switched to using pytest in
2018 and nose has been unmaintained for many years. We have kept
NumPy\'s nose support to avoid breaking downstream projects who
might have been using it and not yet switched to pytest or some
other testing framework. With the arrival of Python 3.12, unpatched
nose will raise an error. It is time to move on.
*Decorators removed*:
- raises
- slow
- setastest
- skipif
- knownfailif
- deprecated
- parametrize
- \_needs_refcount
These are not to be confused with pytest versions with similar
names, e.g., pytest.mark.slow, pytest.mark.skipif,
pytest.mark.parametrize.
*Functions removed*:
- Tester
- import_nose
- run_module_suite
([gh-23041](https://github.com/numpy/numpy/pull/23041))
- The `numpy.testing.utils` shim has been removed. Importing from the
`numpy.testing.utils` shim has been deprecated since 2019, the shim
has now been removed. All imports should be made directly from
`numpy.testing`.
([gh-23060](https://github.com/numpy/numpy/pull/23060))
- The environment variable to disable dispatching has been removed.
Support for the `NUMPY_EXPERIMENTAL_ARRAY_FUNCTION` environment
variable has been removed. This variable disabled dispatching with
`__array_function__`.
([gh-23376](https://github.com/numpy/numpy/pull/23376))
- Support for `y=` as an alias of `out=` has been removed. The `fix`,
`isposinf` and `isneginf` functions allowed using `y=` as a
(deprecated) alias for `out=`. This is no longer supported.
([gh-23376](https://github.com/numpy/numpy/pull/23376))
Compatibility notes
- The `busday_count` method now correctly handles cases where the
`begindates` is later in time than the `enddates`. Previously, the
`enddates` was included, even though the documentation states it is
always excluded.
([gh-23229](https://github.com/numpy/numpy/pull/23229))
- When comparing datetimes and timedelta using `np.equal` or
`np.not_equal` numpy previously allowed the comparison with
`casting="unsafe"`. This operation now fails. Forcing the output
dtype using the `dtype` kwarg can make the operation succeed, but we
do not recommend it.
([gh-22707](https://github.com/numpy/numpy/pull/22707))
- When loading data from a file handle using `np.load`, if the handle
is at the end of file, as can happen when reading multiple arrays by
calling `np.load` repeatedly, numpy previously raised `ValueError`
if `allow_pickle=False`, and `OSError` if `allow_pickle=True`. Now
it raises `EOFError` instead, in both cases.
([gh-23105](https://github.com/numpy/numpy/pull/23105))
`np.pad` with `mode=wrap` pads with strict multiples of original data
Code based on earlier version of `pad` that uses `mode="wrap"` will
return different results when the padding size is larger than initial
array.
`np.pad` with `mode=wrap` now always fills the space with strict
multiples of original data even if the padding size is larger than the
initial array.
([gh-22575](https://github.com/numpy/numpy/pull/22575))
Cython `long_t` and `ulong_t` removed
`long_t` and `ulong_t` were aliases for `longlong_t` and `ulonglong_t`
and confusing (a remainder from of Python 2). This change may lead to
the errors:
'long_t' is not a type identifier
'ulong_t' is not a type identifier
We recommend use of bit-sized types such as `cnp.int64_t` or the use of
`cnp.intp_t` which is 32 bits on 32 bit systems and 64 bits on 64 bit
systems (this is most compatible with indexing). If C `long` is desired,
use plain `long` or `npy_long`. `cnp.int_t` is also `long` (NumPy\'s
default integer). However, `long` is 32 bit on 64 bit windows and we may
wish to adjust this even in NumPy. (Please do not hesitate to contact
NumPy developers if you are curious about this.)
([gh-22637](https://github.com/numpy/numpy/pull/22637))
Changed error message and type for bad `axes` argument to `ufunc`
The error message and type when a wrong `axes` value is passed to
`ufunc(..., axes=[...])` has changed. The message is now more
indicative of the problem, and if the value is mismatched an
`AxisError` will be raised. A `TypeError` will still be raised for
invalidinput types.
([gh-22675](https://github.com/numpy/numpy/pull/22675))
Array-likes that define `__array_ufunc__` can now override ufuncs if used as `where`
If the `where` keyword argument of a `numpy.ufunc`{.interpreted-text
role="class"} is a subclass of `numpy.ndarray`{.interpreted-text
role="class"} or is a duck type that defines
`numpy.class.__array_ufunc__`{.interpreted-text role="func"} it can
override the behavior of the ufunc using the same mechanism as the input
and output arguments. Note that for this to work properly, the
`where.__array_ufunc__` implementation will have to unwrap the `where`
argument to pass it into the default implementation of the `ufunc` or,
for `numpy.ndarray`{.interpreted-text role="class"} subclasses before
using `super().__array_ufunc__`.
([gh-23240](https://github.com/numpy/numpy/pull/23240))
Compiling against the NumPy C API is now backwards compatible by default
NumPy now defaults to exposing a backwards compatible subset of the
C-API. This makes the use of `oldest-supported-numpy` unnecessary.
Libraries can override the default minimal version to be compatible with
using:
define NPY_TARGET_VERSION NPY_1_22_API_VERSION
before including NumPy or by passing the equivalent `-D` option to the
compiler. The NumPy 1.25 default is `NPY_1_19_API_VERSION`. Because the
```
### 1.24.4
```
discovered after the 1.24.3 release. It is the last planned
release in the 1.24.x cycle. The Python versions supported by
this release are 3.8-3.11.
Contributors
A total of 4 people contributed to this release. People with a \"+\" by
their names contributed a patch for the first time.
- Bas van Beek
- Charles Harris
- Sebastian Berg
- Hongyang Peng +
Pull requests merged
A total of 6 pull requests were merged for this release.
- [23720](https://github.com/numpy/numpy/pull/23720): MAINT, BLD: Pin rtools to version 4.0 for Windows builds.
- [23739](https://github.com/numpy/numpy/pull/23739): BUG: fix the method for checking local files for 1.24.x
- [23760](https://github.com/numpy/numpy/pull/23760): MAINT: Copy rtools installation from install-rtools.
- [23761](https://github.com/numpy/numpy/pull/23761): BUG: Fix masked array ravel order for A (and somewhat K)
- [23890](https://github.com/numpy/numpy/pull/23890): TYP,DOC: Annotate and document the `metadata` parameter of\...
- [23994](https://github.com/numpy/numpy/pull/23994): MAINT: Update rtools installation
Checksums
MD5
25049e3aee79dde29e7a498d3ad13379 numpy-1.24.4-cp310-cp310-macosx_10_9_x86_64.whl
579b5c357c918feaef4af03af8afb721 numpy-1.24.4-cp310-cp310-macosx_11_0_arm64.whl
c873a14fa4f0210884db9c05e2904286 numpy-1.24.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
110a13ac016286059f0658b52b3646c0 numpy-1.24.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
fa67218966c0aef4094867cad7703648 numpy-1.24.4-cp310-cp310-win32.whl
6ee768803d8ebac43ee0a04e628a69f9 numpy-1.24.4-cp310-cp310-win_amd64.whl
0c918c16b58cb7f6773ea7d76e0bdaff numpy-1.24.4-cp311-cp311-macosx_10_9_x86_64.whl
20506ae8003faf097c6b3a8915b4140e numpy-1.24.4-cp311-cp311-macosx_11_0_arm64.whl
902df9d5963e89d88a1939d94207857f numpy-1.24.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
2543611d802c141c8276e4868b4d9619 numpy-1.24.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
37b23a4e4e148d61dd3a515ac5dbf7ec numpy-1.24.4-cp311-cp311-win32.whl
25e9f6bee2b65ff2a87588e717f15165 numpy-1.24.4-cp311-cp311-win_amd64.whl
f39a0cc3655a482af7d300bcaff5978e numpy-1.24.4-cp38-cp38-macosx_10_9_x86_64.whl
9ed27941388fdb392e8969169f3fc600 numpy-1.24.4-cp38-cp38-macosx_11_0_arm64.whl
dee3f0c7482f1dc8bd1cd27b9b028a2c numpy-1.24.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
2cc0967af29df3caef9fb3520f14e071 numpy-1.24.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
8572a3a0973fa78355bcb5f737745b47 numpy-1.24.4-cp38-cp38-win32.whl
771c63f2ef0d31466bbb12362a532265 numpy-1.24.4-cp38-cp38-win_amd64.whl
5713d9dc3dff287fb72121fe1960c48d numpy-1.24.4-cp39-cp39-macosx_10_9_x86_64.whl
4e6718e3b655219a2a733b4fa242ca32 numpy-1.24.4-cp39-cp39-macosx_11_0_arm64.whl
31487f9a52ef81f8f88ec7fce8738dad numpy-1.24.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
ea597b30187e55eb16ee31631e66f60d numpy-1.24.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
98adbf30c67154056474001c125f6188 numpy-1.24.4-cp39-cp39-win32.whl
49c444b0e572ef45f1d92c106a36004e numpy-1.24.4-cp39-cp39-win_amd64.whl
cdddfdeac437b0f20b4e366f00b5c42e numpy-1.24.4-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
3778338c15628caa3abd61e6f7bd46ec numpy-1.24.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
e16bd49d5295dc1b01ed50d76229fb54 numpy-1.24.4-pp38-pypy38_pp73-win_amd64.whl
3f3995540a17854a29dc79f8eeecd832 numpy-1.24.4.tar.gz
SHA256
c0bfb52d2169d58c1cdb8cc1f16989101639b34c7d3ce60ed70b19c63eba0b64 numpy-1.24.4-cp310-cp310-macosx_10_9_x86_64.whl
ed094d4f0c177b1b8e7aa9cba7d6ceed51c0e569a5318ac0ca9a090680a6a1b1 numpy-1.24.4-cp310-cp310-macosx_11_0_arm64.whl
79fc682a374c4a8ed08b331bef9c5f582585d1048fa6d80bc6c35bc384eee9b4 numpy-1.24.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
7ffe43c74893dbf38c2b0a1f5428760a1a9c98285553c89e12d70a96a7f3a4d6 numpy-1.24.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
4c21decb6ea94057331e111a5bed9a79d335658c27ce2adb580fb4d54f2ad9bc numpy-1.24.4-cp310-cp310-win32.whl
b4bea75e47d9586d31e892a7401f76e909712a0fd510f58f5337bea9572c571e numpy-1.24.4-cp310-cp310-win_amd64.whl
f136bab9c2cfd8da131132c2cf6cc27331dd6fae65f95f69dcd4ae3c3639c810 numpy-1.24.4-cp311-cp311-macosx_10_9_x86_64.whl
e2926dac25b313635e4d6cf4dc4e51c8c0ebfed60b801c799ffc4c32bf3d1254 numpy-1.24.4-cp311-cp311-macosx_11_0_arm64.whl
222e40d0e2548690405b0b3c7b21d1169117391c2e82c378467ef9ab4c8f0da7 numpy-1.24.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
7215847ce88a85ce39baf9e89070cb860c98fdddacbaa6c0da3ffb31b3350bd5 numpy-1.24.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
4979217d7de511a8d57f4b4b5b2b965f707768440c17cb70fbf254c4b225238d numpy-1.24.4-cp311-cp311-win32.whl
b7b1fc9864d7d39e28f41d089bfd6353cb5f27ecd9905348c24187a768c79694 numpy-1.24.4-cp311-cp311-win_amd64.whl
1452241c290f3e2a312c137a9999cdbf63f78864d63c79039bda65ee86943f61 numpy-1.24.4-cp38-cp38-macosx_10_9_x86_64.whl
04640dab83f7c6c85abf9cd729c5b65f1ebd0ccf9de90b270cd61935eef0197f numpy-1.24.4-cp38-cp38-macosx_11_0_arm64.whl
a5425b114831d1e77e4b5d812b69d11d962e104095a5b9c3b641a218abcc050e numpy-1.24.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
dd80e219fd4c71fc3699fc1dadac5dcf4fd882bfc6f7ec53d30fa197b8ee22dc numpy-1.24.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
4602244f345453db537be5314d3983dbf5834a9701b7723ec28923e2889e0bb2 numpy-1.24.4-cp38-cp38-win32.whl
692f2e0f55794943c5bfff12b3f56f99af76f902fc47487bdfe97856de51a706 numpy-1.24.4-cp38-cp38-win_amd64.whl
2541312fbf09977f3b3ad449c4e5f4bb55d0dbf79226d7724211acc905049400 numpy-1.24.4-cp39-cp39-macosx_10_9_x86_64.whl
9667575fb6d13c95f1b36aca12c5ee3356bf001b714fc354eb5465ce1609e62f numpy-1.24.4-cp39-cp39-macosx_11_0_arm64.whl
f3a86ed21e4f87050382c7bc96571755193c4c1392490744ac73d660e8f564a9 numpy-1.24.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
d11efb4dbecbdf22508d55e48d9c8384db795e1b7b51ea735289ff96613ff74d numpy-1.24.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
6620c0acd41dbcb368610bb2f4d83145674040025e5536954782467100aa8835 numpy-1.24.4-cp39-cp39-win32.whl
befe2bf740fd8373cf56149a5c23a0f601e82869598d41f8e188a0e9869926f8 numpy-1.24.4-cp39-cp39-win_amd64.whl
31f13e25b4e304632a4619d0e0777662c2ffea99fcae2029556b17d8ff958aef numpy-1.24.4-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
95f7ac6540e95bc440ad77f56e520da5bf877f87dca58bd095288dce8940532a numpy-1.24.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
e98f220aa76ca2a977fe435f5b04d7b3470c0a2e6312907b37ba6068f26787f2 numpy-1.24.4-pp38-pypy38_pp73-win_amd64.whl
80f5e3a4e498641401868df4208b74581206afbee7cf7b8329daae82676d9463 numpy-1.24.4.tar.gz
```
### 1.24.3
```
discovered after the 1.24.2 release. The Python versions supported by
this release are 3.8-3.11.
Contributors
A total of 12 people contributed to this release. People with a \"+\" by
their names contributed a patch for the first time.
- Aleksei Nikiforov +
- Alexander Heger
- Bas van Beek
- Bob Eldering
- Brock Mendel
- Charles Harris
- Kyle Sunden
- Peter Hawkins
- Rohit Goswami
- Sebastian Berg
- Warren Weckesser
- dependabot\[bot\]
Pull requests merged
A total of 17 pull requests were merged for this release.
- [23206](https://github.com/numpy/numpy/pull/23206): BUG: fix for f2py string scalars (#23194)
- [23207](https://github.com/numpy/numpy/pull/23207): BUG: datetime64/timedelta64 comparisons return NotImplemented
- [23208](https://github.com/numpy/numpy/pull/23208): MAINT: Pin matplotlib to version 3.6.3 for refguide checks
- [23221](https://github.com/numpy/numpy/pull/23221): DOC: Fix matplotlib error in documentation
- [23226](https://github.com/numpy/numpy/pull/23226): CI: Ensure submodules are initialized in gitpod.
- [23341](https://github.com/numpy/numpy/pull/23341): TYP: Replace duplicate reduce in ufunc type signature with reduceat.
- [23342](https://github.com/numpy/numpy/pull/23342): TYP: Remove duplicate CLIP/WRAP/RAISE in `__init__.pyi`.
- [23343](https://github.com/numpy/numpy/pull/23343): TYP: Mark `d` argument to fftfreq and rfftfreq as optional\...
- [23344](https://github.com/numpy/numpy/pull/23344): TYP: Add type annotations for comparison operators to MaskedArray.
- [23345](https://github.com/numpy/numpy/pull/23345): TYP: Remove some stray type-check-only imports of `msort`
- [23370](https://github.com/numpy/numpy/pull/23370): BUG: Ensure like is only stripped for `like=` dispatched functions
- [23543](https://github.com/numpy/numpy/pull/23543): BUG: fix loading and storing big arrays on s390x
- [23544](https://github.com/numpy/numpy/pull/23544): MAINT: Bump larsoner/circleci-artifacts-redirector-action
- [23634](https://github.com/numpy/numpy/pull/23634): BUG: Ignore invalid and overflow warnings in masked setitem
- [23635](https://github.com/numpy/numpy/pull/23635): BUG: Fix masked array raveling when `order="A"` or `order="K"`
- [23636](https://github.com/numpy/numpy/pull/23636): MAINT: Update conftest for newer hypothesis versions
- [23637](https://github.com/numpy/numpy/pull/23637): BUG: Fix bug in parsing F77 style string arrays.
Checksums
MD5
93a3ce07e3773842c54d831f18e3eb8d numpy-1.24.3-cp310-cp310-macosx_10_9_x86_64.whl
39691ff3d1612438dfcd3266c9765aab numpy-1.24.3-cp310-cp310-macosx_11_0_arm64.whl
a99234799a239e7e9c6fa15c212996df numpy-1.24.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
3673aa638746851dd19d5199e1eb3a91 numpy-1.24.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
3c72962360bcd0938a6bddee6cdca766 numpy-1.24.3-cp310-cp310-win32.whl
a3329efa646012fa4ee06ce5e08eadaf numpy-1.24.3-cp310-cp310-win_amd64.whl
5323fb0323d1ec10ee3c35a2fa79cbcd numpy-1.24.3-cp311-cp311-macosx_10_9_x86_64.whl
cfa001dcd07cdf6414ced433e88959d4 numpy-1.24.3-cp311-cp311-macosx_11_0_arm64.whl
d75bbfb06ed00d04232dce0e865eb42c numpy-1.24.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
fe18b810bcf284572467ce585dbc533b numpy-1.24.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
e97699a4ef96a81e0916bdf15440abe0 numpy-1.24.3-cp311-cp311-win32.whl
e6de5b7d77dc43ed47f516eb10bbe8b6 numpy-1.24.3-cp311-cp311-win_amd64.whl
dd04ebf441a8913f4900b56e7a33a75e numpy-1.24.3-cp38-cp38-macosx_10_9_x86_64.whl
e47ac5521b0bfc3effb040072d8a7902 numpy-1.24.3-cp38-cp38-macosx_11_0_arm64.whl
7b7dae3309e7ca8a8859633a5d337431 numpy-1.24.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
8cc87b88163ed84e70c48fd0f5f8f20e numpy-1.24.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
350934bae971d0ebe231a59b640069db numpy-1.24.3-cp38-cp38-win32.whl
c4708ef009bb5d427ea94a4fc4a10e12 numpy-1.24.3-cp38-cp38-win_amd64.whl
44b08a293a4e12d62c27b8f15ba5664e numpy-1.24.3-cp39-cp39-macosx_10_9_x86_64.whl
3ae7ac30f86c720e42b2324a0ae1adf5 numpy-1.24.3-cp39-cp39-macosx_11_0_arm64.whl
065464a8d918c670c7863d1e72e3e6dd numpy-1.24.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
1f163b9ea417c253e84480aa8d99dee6 numpy-1.24.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
c86e648389e333e062bea11c749b9a32 numpy-1.24.3-cp39-cp39-win32.whl
bfe332e577c604d6d62a57381e6aa0a6 numpy-1.24.3-cp39-cp39-win_amd64.whl
374695eeef5aca32a5b7f2f518dd3ba1 numpy-1.24.3-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
6abd9dba54405182e6e7bb32dbe377bb numpy-1.24.3-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
0848bd41c08dd5ebbc5a7f0788678e0e numpy-1.24.3-pp38-pypy38_pp73-win_amd64.whl
89e5e2e78407032290ae6acf6dcaea46 numpy-1.24.3.tar.gz
SHA256
3c1104d3c036fb81ab923f507536daedc718d0ad5a8707c6061cdfd6d184e570 numpy-1.24.3-cp310-cp310-macosx_10_9_x86_64.whl
202de8f38fc4a45a3eea4b63e2f376e5f2dc64ef0fa692838e31a808520efaf7 numpy-1.24.3-cp310-cp310-macosx_11_0_arm64.whl
8535303847b89aa6b0f00aa1dc62867b5a32923e4d1681a35b5eef2d9591a463 numpy-1.24.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
2d926b52ba1367f9acb76b0df6ed21f0b16a1ad87c6720a1121674e5cf63e2b6 numpy-1.24.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
f21c442fdd2805e91799fbe044a7b999b8571bb0ab0f7850d0cb9641a687092b numpy-1.24.3-cp310-cp310-win32.whl
ab5f23af8c16022663a652d3b25dcdc272ac3f83c3af4c02eb8b824e6b3ab9d7 numpy-1.24.3-cp310-cp310-win_amd64.whl
9a7721ec204d3a237225db3e194c25268faf92e19338a35f3a224469cb6039a3 numpy-1.24.3-cp311-cp311-macosx_10_9_x86_64.whl
d6cc757de514c00b24ae8cf5c876af2a7c3df189028d68c0cb4eaa9cd5afc2bf numpy-1.24.3-cp311-cp311-macosx_11_0_arm64.whl
76e3f4e85fc5d4fd311f6e9b794d0c00e7002ec122be271f2019d63376f1d385 numpy-1.24.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
a1d3c026f57ceaad42f8231305d4653d5f05dc6332a730ae5c0bea3513de0950 numpy-1.24.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
c91c4afd8abc3908e00a44b2672718905b8611503f7ff87390cc0ac3423fb096 numpy-1.24.3-cp311-cp311-win32.whl
5342cf6aad47943286afa6f1609cad9b4266a05e7f2ec408e2cf7aea7ff69d80 numpy-1.24.3-cp311-cp311-win_amd64.whl
7776ea65423ca6a15255ba1872d82d207bd1e09f6
This PR pins numpy to the latest release 1.26.2.
Changelog
### 1.26.1 ``` discovered after the 1.26.0 release. In addition, it adds new functionality for detecting BLAS and LAPACK when building from source. Highlights are: - Improved detection of BLAS and LAPACK libraries for meson builds - Pickle compatibility with the upcoming NumPy 2.0. The 1.26.release series is the last planned minor release series before NumPy 2.0. The Python versions supported by this release are 3.9-3.12. Build system changes Improved BLAS/LAPACK detection and control Auto-detection for a number of BLAS and LAPACK is now implemented for Meson. By default, the build system will try to detect MKL, Accelerate (on macOS \>=13.3), OpenBLAS, FlexiBLAS, BLIS and reference BLAS/LAPACK. Support for MKL was significantly improved, and support for FlexiBLAS was added. New command-line flags are available to further control the selection of the BLAS and LAPACK libraries to build against. To select a specific library, use the config-settings interface via `pip` or `pypa/build`. E.g., to select `libblas`/`liblapack`, use: $ pip install numpy -Csetup-args=-Dblas=blas -Csetup-args=-Dlapack=lapack $ OR $ python -m build . -Csetup-args=-Dblas=blas -Csetup-args=-Dlapack=lapack This works not only for the libraries named above, but for any library that Meson is able to detect with the given name through `pkg-config` or CMake. Besides `-Dblas` and `-Dlapack`, a number of other new flags are available to control BLAS/LAPACK selection and behavior: - `-Dblas-order` and `-Dlapack-order`: a list of library names to search for in order, overriding the default search order. - `-Duse-ilp64`: if set to `true`, use ILP64 (64-bit integer) BLAS and LAPACK. Note that with this release, ILP64 support has been extended to include MKL and FlexiBLAS. OpenBLAS and Accelerate were supported in previous releases. - `-Dallow-noblas`: if set to `true`, allow NumPy to build with its internal (very slow) fallback routines instead of linking against an external BLAS/LAPACK library. *The default for this flag may be changed to \`\`true\`\` in a future 1.26.x release, however for 1.26.1 we\'d prefer to keep it as \`\`false\`\` because if failures to detect an installed library are happening, we\'d like a bug report for that, so we can quickly assess whether the new auto-detection machinery needs further improvements.* - `-Dmkl-threading`: to select the threading layer for MKL. There are four options: `seq`, `iomp`, `gomp` and `tbb`. The default is `auto`, which selects from those four as appropriate given the version of MKL selected. - `-Dblas-symbol-suffix`: manually select the symbol suffix to use for the library - should only be needed for linking against libraries built in a non-standard way. New features `numpy._core` submodule stubs `numpy._core` submodule stubs were added to provide compatibility with pickled arrays created using NumPy 2.0 when running Numpy 1.26. Contributors A total of 13 people contributed to this release. People with a \"+\" by their names contributed a patch for the first time. - Andrew Nelson - Anton Prosekin + - Charles Harris - Chongyun Lee + - Ivan A. Melnikov + - Jake Lishman + - Mahder Gebremedhin + - Mateusz Sokół - Matti Picus - Munira Alduraibi + - Ralf Gommers - Rohit Goswami - Sayed Adel Pull requests merged A total of 20 pull requests were merged for this release. - [24742](https://github.com/numpy/numpy/pull/24742): MAINT: Update cibuildwheel version - [24748](https://github.com/numpy/numpy/pull/24748): MAINT: fix version string in wheels built with setup.py - [24771](https://github.com/numpy/numpy/pull/24771): BLD, BUG: Fix build failure for host flags e.g. `-march=native`\... - [24773](https://github.com/numpy/numpy/pull/24773): DOC: Updated the f2py docs to remove a note on -fimplicit-none - [24776](https://github.com/numpy/numpy/pull/24776): BUG: Fix SIMD f32 trunc test on s390x when baseline is none - [24785](https://github.com/numpy/numpy/pull/24785): BLD: add libquadmath to licences and other tweaks (#24753) - [24786](https://github.com/numpy/numpy/pull/24786): MAINT: Activate `use-compute-credits` for Cirrus. - [24803](https://github.com/numpy/numpy/pull/24803): BLD: updated vendored-meson/meson for mips64 fix - [24804](https://github.com/numpy/numpy/pull/24804): MAINT: fix licence path win - [24813](https://github.com/numpy/numpy/pull/24813): BUG: Fix order of Windows OS detection macros. - [24831](https://github.com/numpy/numpy/pull/24831): BUG, SIMD: use scalar cmul on bad Apple clang x86_64 (#24828) - [24840](https://github.com/numpy/numpy/pull/24840): BUG: Fix DATA statements for f2py - [24870](https://github.com/numpy/numpy/pull/24870): API: Add `NumpyUnpickler` for backporting - [24872](https://github.com/numpy/numpy/pull/24872): MAINT: Xfail test failing on PyPy. - [24879](https://github.com/numpy/numpy/pull/24879): BLD: fix math func feature checks, fix FreeBSD build, add CI\... - [24899](https://github.com/numpy/numpy/pull/24899): ENH: meson: implement BLAS/LAPACK auto-detection and many CI\... - [24902](https://github.com/numpy/numpy/pull/24902): DOC: add a 1.26.1 release notes section for BLAS/LAPACK build\... - [24906](https://github.com/numpy/numpy/pull/24906): MAINT: Backport `numpy._core` stubs. Remove `NumpyUnpickler` - [24911](https://github.com/numpy/numpy/pull/24911): MAINT: Bump pypa/cibuildwheel from 2.16.1 to 2.16.2 - [24912](https://github.com/numpy/numpy/pull/24912): BUG: loongarch doesn\'t use REAL(10) Checksums MD5 bda38de1a047dd9fdddae16c0d9fb358 numpy-1.26.1-cp310-cp310-macosx_10_9_x86_64.whl 196d2e39047da64ab28e177760c95461 numpy-1.26.1-cp310-cp310-macosx_11_0_arm64.whl 9d25010a7bf50e624d2fed742790afbd numpy-1.26.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 9b22fa3d030807f0708007d9c0659f65 numpy-1.26.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl eea626b8b930acb4b32302a9e95714f5 numpy-1.26.1-cp310-cp310-musllinux_1_1_x86_64.whl 3c40ef068f50d2ac2913c5b9fa1233fa numpy-1.26.1-cp310-cp310-win32.whl 315c251d2f284af25761a37ce6dd4d10 numpy-1.26.1-cp310-cp310-win_amd64.whl ebdd5046937df50e9f54a6d38c5775dd numpy-1.26.1-cp311-cp311-macosx_10_9_x86_64.whl 682f9beebe8547f205d6cdc8ff96a984 numpy-1.26.1-cp311-cp311-macosx_11_0_arm64.whl e86da9b6040ea88b3835c4d8f8578658 numpy-1.26.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl ebcb6cf7f64454215e29d8a89829c8e1 numpy-1.26.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl a8c89e13dc9a63712104e2fb06fb63a6 numpy-1.26.1-cp311-cp311-musllinux_1_1_x86_64.whl 339795930404988dbc664ff4cc72b399 numpy-1.26.1-cp311-cp311-win32.whl 4ef5e1bdd7726c19615843f5ac72e618 numpy-1.26.1-cp311-cp311-win_amd64.whl 3aad6bc72db50e9cc88aa5813e8f35bd numpy-1.26.1-cp312-cp312-macosx_10_9_x86_64.whl fd62f65ae7798dbda9a3f7af7aa5c8db numpy-1.26.1-cp312-cp312-macosx_11_0_arm64.whl 104d939e080f1baf0a56aed1de0e79e3 numpy-1.26.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl c44b56c96097f910bbec1420abcf3db5 numpy-1.26.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 1dce230368ae5fc47dd0fe8de8ff771d numpy-1.26.1-cp312-cp312-musllinux_1_1_x86_64.whl d93338e7d60e1d294ca326450e99806b numpy-1.26.1-cp312-cp312-win32.whl a1832f46521335c1ee4c56dbf12e600b numpy-1.26.1-cp312-cp312-win_amd64.whl 946fbb0b6caca9258985495532d3f9ab numpy-1.26.1-cp39-cp39-macosx_10_9_x86_64.whl 78c2ab13d395d67d90bcd6583a6f61a8 numpy-1.26.1-cp39-cp39-macosx_11_0_arm64.whl 0a9d80d8b646abf4ffe51fff3e075d10 numpy-1.26.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 0229ba8145d4f58500873b540a55d60e numpy-1.26.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 9179fc57c03260374c86e18867c24463 numpy-1.26.1-cp39-cp39-musllinux_1_1_x86_64.whl 246a3103fdbe5d891d7a8aee28875a26 numpy-1.26.1-cp39-cp39-win32.whl 4589dcb7f754fade6ea3946416bee638 numpy-1.26.1-cp39-cp39-win_amd64.whl 3af340d5487a6c045f00fe5eb889957c numpy-1.26.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl 28aece4f1ceb92ec463aa353d4a91c8b numpy-1.26.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl bbd0461a1e31017b05509e9971b3478e numpy-1.26.1-pp39-pypy39_pp73-win_amd64.whl 2d770f4c281d405b690c4bcb3dbe99e2 numpy-1.26.1.tar.gz SHA256 82e871307a6331b5f09efda3c22e03c095d957f04bf6bc1804f30048d0e5e7af numpy-1.26.1-cp310-cp310-macosx_10_9_x86_64.whl cdd9ec98f0063d93baeb01aad472a1a0840dee302842a2746a7a8e92968f9575 numpy-1.26.1-cp310-cp310-macosx_11_0_arm64.whl d78f269e0c4fd365fc2992c00353e4530d274ba68f15e968d8bc3c69ce5f5244 numpy-1.26.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 8ab9163ca8aeb7fd32fe93866490654d2f7dda4e61bc6297bf72ce07fdc02f67 numpy-1.26.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 78ca54b2f9daffa5f323f34cdf21e1d9779a54073f0018a3094ab907938331a2 numpy-1.26.1-cp310-cp310-musllinux_1_1_x86_64.whl d1cfc92db6af1fd37a7bb58e55c8383b4aa1ba23d012bdbba26b4bcca45ac297 numpy-1.26.1-cp310-cp310-win32.whl d2984cb6caaf05294b8466966627e80bf6c7afd273279077679cb010acb0e5ab numpy-1.26.1-cp310-cp310-win_amd64.whl cd7837b2b734ca72959a1caf3309457a318c934abef7a43a14bb984e574bbb9a numpy-1.26.1-cp311-cp311-macosx_10_9_x86_64.whl 1c59c046c31a43310ad0199d6299e59f57a289e22f0f36951ced1c9eac3665b9 numpy-1.26.1-cp311-cp311-macosx_11_0_arm64.whl d58e8c51a7cf43090d124d5073bc29ab2755822181fcad978b12e144e5e5a4b3 numpy-1.26.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 6081aed64714a18c72b168a9276095ef9155dd7888b9e74b5987808f0dd0a974 numpy-1.26.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 97e5d6a9f0702c2863aaabf19f0d1b6c2628fbe476438ce0b5ce06e83085064c numpy-1.26.1-cp311-cp311-musllinux_1_1_x86_64.whl b9d45d1dbb9de84894cc50efece5b09939752a2d75aab3a8b0cef6f3a35ecd6b numpy-1.26.1-cp311-cp311-win32.whl 3649d566e2fc067597125428db15d60eb42a4e0897fc48d28cb75dc2e0454e53 numpy-1.26.1-cp311-cp311-win_amd64.whl 1d1bd82d539607951cac963388534da3b7ea0e18b149a53cf883d8f699178c0f numpy-1.26.1-cp312-cp312-macosx_10_9_x86_64.whl afd5ced4e5a96dac6725daeb5242a35494243f2239244fad10a90ce58b071d24 numpy-1.26.1-cp312-cp312-macosx_11_0_arm64.whl a03fb25610ef560a6201ff06df4f8105292ba56e7cdd196ea350d123fc32e24e numpy-1.26.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl dcfaf015b79d1f9f9c9fd0731a907407dc3e45769262d657d754c3a028586124 numpy-1.26.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl e509cbc488c735b43b5ffea175235cec24bbc57b227ef1acc691725beb230d1c numpy-1.26.1-cp312-cp312-musllinux_1_1_x86_64.whl af22f3d8e228d84d1c0c44c1fbdeb80f97a15a0abe4f080960393a00db733b66 numpy-1.26.1-cp312-cp312-win32.whl 9f42284ebf91bdf32fafac29d29d4c07e5e9d1af862ea73686581773ef9e73a7 numpy-1.26.1-cp312-cp312-win_amd64.whl bb894accfd16b867d8643fc2ba6c8617c78ba2828051e9a69511644ce86ce83e numpy-1.26.1-cp39-cp39-macosx_10_9_x86_64.whl e44ccb93f30c75dfc0c3aa3ce38f33486a75ec9abadabd4e59f114994a9c4617 numpy-1.26.1-cp39-cp39-macosx_11_0_arm64.whl 9696aa2e35cc41e398a6d42d147cf326f8f9d81befcb399bc1ed7ffea339b64e numpy-1.26.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl a5b411040beead47a228bde3b2241100454a6abde9df139ed087bd73fc0a4908 numpy-1.26.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 1e11668d6f756ca5ef534b5be8653d16c5352cbb210a5c2a79ff288e937010d5 numpy-1.26.1-cp39-cp39-musllinux_1_1_x86_64.whl d1d2c6b7dd618c41e202c59c1413ef9b2c8e8a15f5039e344af64195459e3104 numpy-1.26.1-cp39-cp39-win32.whl 59227c981d43425ca5e5c01094d59eb14e8772ce6975d4b2fc1e106a833d5ae2 numpy-1.26.1-cp39-cp39-win_amd64.whl 06934e1a22c54636a059215d6da99e23286424f316fddd979f5071093b648668 numpy-1.26.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl 76ff661a867d9272cd2a99eed002470f46dbe0943a5ffd140f49be84f68ffc42 numpy-1.26.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 6965888d65d2848e8768824ca8288db0a81263c1efccec881cb35a0d805fcd2f numpy-1.26.1-pp39-pypy39_pp73-win_amd64.whl c8c6c72d4a9f831f328efb1312642a1cafafaa88981d9ab76368d50d07d93cbe numpy-1.26.1.tar.gz ``` ### 1.26.0 ``` The NumPy 1.26.0 release is a continuation of the 1.25.x release cycle with the addition of Python 3.12.0 support. Python 3.12 dropped distutils, consequently supporting it required finding a replacement for the setup.py/distutils based build system NumPy was using. We have chosen to use the Meson build system instead, and this is the first NumPy release supporting it. This is also the first release that supports Cython 3.0 in addition to retaining 0.29.X compatibility. Supporting those two upgrades was a large project, over 100 files have been touched in this release. The changelog doesn\'t capture the full extent of the work, special thanks to Ralf Gommers, Sayed Adel, Stéfan van der Walt, and Matti Picus who did much of the work in the main development branch. The highlights of this release are: - Python 3.12.0 support. - Cython 3.0.0 compatibility. - Use of the Meson build system - Updated SIMD support The Python versions supported in this release are 3.9-3.12. Build system changes In this release, NumPy has switched to Meson as the build system and meson-python as the build backend. Installing NumPy or building a wheel can be done with standard tools like `pip` and `pypa/build`. The following are supported: - Regular installs: `pip install numpy` or (in a cloned repo) `pip install .` - Building a wheel: `python -m build` (preferred), or `pip wheel .` - Editable installs: `pip install -e . --no-build-isolation` - Development builds through the custom CLI implemented with [spin](https://github.com/scientific-python/spin): `spin build`. All the regular `pip` and `pypa/build` flags (e.g., `--no-build-isolation`) should work as expected. NumPy-specific build customization Many of the NumPy-specific ways of customizing builds have changed. The `NPY_*` environment variables which control BLAS/LAPACK, SIMD, threading, and other such options are no longer supported, nor is a `site.cfg` file to select BLAS and LAPACK. Instead, there are command-line flags that can be passed to the build via `pip`/`build`\'s config-settings interface. These flags are all listed in the `meson_options.txt` file in the root of the repo. Detailed documented will be available before the final 1.26.0 release; for now please see [the SciPy \"building from source\"docs](http://scipy.github.io/devdocs/building/index.html) since most build customization works in an almost identical way in SciPy as it does in NumPy. Build dependencies While the runtime dependencies of NumPy have not changed, the build dependencies have. Because we temporarily vendor Meson and meson-python, there are several new dependencies - please see the `[build-system]` section of `pyproject.toml` for details. Troubleshooting This build system change is quite large. In case of unexpected issues, it is still possible to use a `setup.py`-based build as a temporary workaround (on Python 3.9-3.11, not 3.12), by copying `pyproject.toml.setuppy` to `pyproject.toml`. However, please open an issue with details on the NumPy issue tracker. We aim to phase out `setup.py` builds as soon as possible, and therefore would like to see all potential blockers surfaced early on in the 1.26.0 release cycle. Contributors A total of 11 people contributed to this release. People with a \"+\" by their names contributed a patch for the first time. - Bas van Beek - Charles Harris - Matti Picus - Melissa Weber Mendonça - Ralf Gommers - Sayed Adel - Sebastian Berg - Stefan van der Walt - Tyler Reddy - Warren Weckesser Pull requests merged A total of 18 pull requests were merged for this release. - [24305](https://github.com/numpy/numpy/pull/24305): MAINT: Prepare 1.26.x branch for development - [24308](https://github.com/numpy/numpy/pull/24308): MAINT: Massive update of files from main for numpy 1.26 - [24322](https://github.com/numpy/numpy/pull/24322): CI: fix wheel builds on the 1.26.x branch - [24326](https://github.com/numpy/numpy/pull/24326): BLD: update openblas to newer version - [24327](https://github.com/numpy/numpy/pull/24327): TYP: Trim down the `_NestedSequence.__getitem__` signature - [24328](https://github.com/numpy/numpy/pull/24328): BUG: fix choose refcount leak - [24337](https://github.com/numpy/numpy/pull/24337): TST: fix running the test suite in builds without BLAS/LAPACK - [24338](https://github.com/numpy/numpy/pull/24338): BUG: random: Fix generation of nan by dirichlet. - [24340](https://github.com/numpy/numpy/pull/24340): MAINT: Dependabot updates from main - [24342](https://github.com/numpy/numpy/pull/24342): MAINT: Add back NPY_RUN_MYPY_IN_TESTSUITE=1 - [24353](https://github.com/numpy/numpy/pull/24353): MAINT: Update `extbuild.py` from main. - [24356](https://github.com/numpy/numpy/pull/24356): TST: fix distutils tests for deprecations in recent setuptools\... - [24375](https://github.com/numpy/numpy/pull/24375): MAINT: Update cibuildwheel to version 2.15.0 - [24381](https://github.com/numpy/numpy/pull/24381): MAINT: Fix codespaces setup.sh script - [24403](https://github.com/numpy/numpy/pull/24403): ENH: Vendor meson for multi-target build support - [24404](https://github.com/numpy/numpy/pull/24404): BLD: vendor meson-python to make the Windows builds with SIMD\... - [24405](https://github.com/numpy/numpy/pull/24405): BLD, SIMD: The meson CPU dispatcher implementation - [24406](https://github.com/numpy/numpy/pull/24406): MAINT: Remove versioneer Checksums MD5 875d02016f215f8ce2513453393f0089 numpy-1.26.0b1-cp310-cp310-macosx_10_9_x86_64.whl 7df1856729096fbbbbb82b58c1695810 numpy-1.26.0b1-cp310-cp310-macosx_11_0_arm64.whl 928037510906572ecadb154b8089853f numpy-1.26.0b1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 93fb7c8a0e7af169c9bf42d8bfa17c2c numpy-1.26.0b1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl a865069d224bf3830671de8e1f374344 numpy-1.26.0b1-cp310-cp310-musllinux_1_1_x86_64.whl c53d1d8cb653fc08bd3f931e4c965430 numpy-1.26.0b1-cp310-cp310-win_amd64.whl c7e212fbb7e64231747c6c8aac0f8678 numpy-1.26.0b1-cp311-cp311-macosx_10_9_x86_64.whl f2df03cdaee283c1f7486d2f66e497dd numpy-1.26.0b1-cp311-cp311-macosx_11_0_arm64.whl 8af359b78166474b7a621a482f3073fd numpy-1.26.0b1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 4eec2761b87ccd43028697410ed8909d numpy-1.26.0b1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl d9f0b03e455e9e99bdbe69e2e729c197 numpy-1.26.0b1-cp311-cp311-musllinux_1_1_x86_64.whl dd1c5e4492988e2b3641602b295e7de3 numpy-1.26.0b1-cp311-cp311-win_amd64.whl 88e35ab901c8315ccdb172abc0d2350c numpy-1.26.0b1-cp312-cp312-macosx_10_9_x86_64.whl ad426a4203844eaa8de6b519e94dc2c0 numpy-1.26.0b1-cp312-cp312-macosx_11_0_arm64.whl 2e0e7a297de88cfe930c205b1ab8fdb0 numpy-1.26.0b1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 5d4ea12ab53e506a9887ab8a587f68f6 numpy-1.26.0b1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 1b3c3a80d2fb928b753545ded60312f3 numpy-1.26.0b1-cp312-cp312-musllinux_1_1_x86_64.whl e27356122ee42d84f6965ac802792bc3 numpy-1.26.0b1-cp312-cp312-win_amd64.whl 1cc0d71476548fa30c27a542e3c3f9bf numpy-1.26.0b1-cp39-cp39-macosx_10_9_x86_64.whl ec4882af449c1754cc7af84a82305aed numpy-1.26.0b1-cp39-cp39-macosx_11_0_arm64.whl 142493180019de1ec22c4510bf650366 numpy-1.26.0b1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 4a0c76b75fa36c54c0d2a9107c838910 numpy-1.26.0b1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl cb4d1c3b95e3a2662f94475b4b525da0 numpy-1.26.0b1-cp39-cp39-musllinux_1_1_x86_64.whl afa3f60467530e022eb1a584a8c48f84 numpy-1.26.0b1-cp39-cp39-win_amd64.whl 35c77e2f2b25225ae62354f91c26a693 numpy-1.26.0b1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl 1986181def7286ae37ced5df7c0ca312 numpy-1.26.0b1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl e013942d0d71cb6a680afa89c9aa5259 numpy-1.26.0b1-pp39-pypy39_pp73-win_amd64.whl 3268568cee06327fa34175aa3805829d numpy-1.26.0b1.tar.gz SHA256 9a74361204dc604ba53916ed55aef0ca73e7aa3d0b7e47e1c28aece8c2ad4f59 numpy-1.26.0b1-cp310-cp310-macosx_10_9_x86_64.whl ab9e86bb7c9d3e009945b24a92318ff5d8c245e0e0aaaa765825c4561c292d53 numpy-1.26.0b1-cp310-cp310-macosx_11_0_arm64.whl b0b73599c80b29dfa7f812cb2e8738ce3f058b413e9f2f478e3cc4e038bb8f8e numpy-1.26.0b1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 4a6d4c99396c57e02b0181f01ba42b482f327774057e51fb7fb390a130c95cff numpy-1.26.0b1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 02af7482f34aeb9658ece615c922942f1a3908c449a9a6cd9f33fa233ce486d4 numpy-1.26.0b1-cp310-cp310-musllinux_1_1_x86_64.whl 5a8f04e957259ef93a1e4a29da0b64d49ee842af456257bbb7253925cfe2f7bd numpy-1.26.0b1-cp310-cp310-win_amd64.whl f71e10402e705aaa5908464e489d38e6583c48e40a4721f83195772178c7da9f numpy-1.26.0b1-cp311-cp311-macosx_10_9_x86_64.whl 94d5572fea8dca0fa929da9d17fa49e525ceee1e59b04372dfa5bd8a5f688f5f numpy-1.26.0b1-cp311-cp311-macosx_11_0_arm64.whl 1f88e6fe42b0d6418e53332e525b299762dbd9e33055d2e0398e6298da5b0cc9 numpy-1.26.0b1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl c466707e5ce5a44caadb85fd672a5ce0bfc060012df465771e7b10506e1e5dad numpy-1.26.0b1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 16313a28cf703ae722b3ac139809360ffef81a45e758f196e538be3bcbee85c9 numpy-1.26.0b1-cp311-cp311-musllinux_1_1_x86_64.whl ea85e8e297af49d30830177ecb0c54d1cbca051e4306161f3ceabfa66560b17c numpy-1.26.0b1-cp311-cp311-win_amd64.whl 321a063fabc302931029f831f284cf43c301fdeead1b15df2f8aa87673294d4d numpy-1.26.0b1-cp312-cp312-macosx_10_9_x86_64.whl dc36a9e8df48b72dad668d6f4036ed477d8bc2cb1f7a23b688e8e8057afdfee3 numpy-1.26.0b1-cp312-cp312-macosx_11_0_arm64.whl 3c6c5804671fa1697e3d0cbc608a65c55794fb6682f4e04e9f6d65d0ddfc47c7 numpy-1.26.0b1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 3aa806da215e9c10ba89e9037a69c7a56367e059615679ef1a5cf937eedfbf61 numpy-1.26.0b1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl b66135c02ee55f9113dce3c8c5130b5feaead8767cd2c7ad36547a3d5e264230 numpy-1.26.0b1-cp312-cp312-musllinux_1_1_x86_64.whl 87f2799f475e9e7aee69254dfe357975b163d409550d4641a0bca4cb4f64b725 numpy-1.26.0b1-cp312-cp312-win_amd64.whl 2b258f67ca4a8245c74470da66a87684ddb3f06dde98760efc7ca792a44ee254 numpy-1.26.0b1-cp39-cp39-macosx_10_9_x86_64.whl a31d9109ffed9fc5566e73346a076fffbc7db00e626579ae4d5dfec933b29bfc numpy-1.26.0b1-cp39-cp39-macosx_11_0_arm64.whl 18e29ab806ec5e0b05df900d44b3b257a5901c32fc3ddaeb818c520cd9279b4e numpy-1.26.0b1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 216b47882877ea5272f279c08bf7e42935728f35c6db2e4843b37db7b29ce016 numpy-1.26.0b1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl eea337d6d5ab2b6eb657b3f18e8b57a280f16fb5f94df484d9c1a8d3450d9ae9 numpy-1.26.0b1-cp39-cp39-musllinux_1_1_x86_64.whl db698c9008217c54a8005ea58bd5836241d7b519c8bb16a698a1b4ec4ca296a8 numpy-1.26.0b1-cp39-cp39-win_amd64.whl f250b3099649137f1021f8f95a9404273bcb7539f0bef6d6cf2c91260285edc4 numpy-1.26.0b1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl 22584a41b1be30543dd8c030affc90d8cb7ec19a56fda7f27fc33f64f8b0fbaa numpy-1.26.0b1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 8aefe8ab1228e00146e5ae88290c7fdb8221aef45b357aed7f3dff6ac3b3b25a numpy-1.26.0b1-pp39-pypy39_pp73-win_amd64.whl c67eea90827e1e9aa220a3fc380ce8776428deba8ac9e7c931ce7b69e8dce115 numpy-1.26.0b1.tar.gz ``` ### 1.25.2 ``` discovered after the 1.25.1 release. This is the last planned release in the 1.25.x series, the next release will be 1.26.0, which will use the meson build system and support Python 3.12. The Python versions supported by this release are 3.9-3.11. Contributors A total of 13 people contributed to this release. People with a \"+\" by their names contributed a patch for the first time. - Aaron Meurer - Andrew Nelson - Charles Harris - Kevin Sheppard - Matti Picus - Nathan Goldbaum - Peter Hawkins - Ralf Gommers - Randy Eckenrode + - Sam James + - Sebastian Berg - Tyler Reddy - dependabot\[bot\] Pull requests merged A total of 19 pull requests were merged for this release. - [24148](https://github.com/numpy/numpy/pull/24148): MAINT: prepare 1.25.x for further development - [24174](https://github.com/numpy/numpy/pull/24174): ENH: Improve clang-cl compliance - [24179](https://github.com/numpy/numpy/pull/24179): MAINT: Upgrade various build dependencies. - [24182](https://github.com/numpy/numpy/pull/24182): BLD: use `-ftrapping-math` with Clang on macOS - [24183](https://github.com/numpy/numpy/pull/24183): BUG: properly handle negative indexes in ufunc_at fast path - [24184](https://github.com/numpy/numpy/pull/24184): BUG: PyObject_IsTrue and PyObject_Not error handling in setflags - [24185](https://github.com/numpy/numpy/pull/24185): BUG: histogram small range robust - [24186](https://github.com/numpy/numpy/pull/24186): MAINT: Update meson.build files from main branch - [24234](https://github.com/numpy/numpy/pull/24234): MAINT: exclude min, max and round from `np.__all__` - [24241](https://github.com/numpy/numpy/pull/24241): MAINT: Dependabot updates - [24242](https://github.com/numpy/numpy/pull/24242): BUG: Fix the signature for np.array_api.take - [24243](https://github.com/numpy/numpy/pull/24243): BLD: update OpenBLAS to an intermeidate commit - [24244](https://github.com/numpy/numpy/pull/24244): BUG: Fix reference count leak in str(scalar). - [24245](https://github.com/numpy/numpy/pull/24245): BUG: fix invalid function pointer conversion error - [24255](https://github.com/numpy/numpy/pull/24255): BUG: Factor out slow `getenv` call used for memory policy warning - [24292](https://github.com/numpy/numpy/pull/24292): CI: correct URL in cirrus.star - [24293](https://github.com/numpy/numpy/pull/24293): BUG: Fix C types in scalartypes - [24294](https://github.com/numpy/numpy/pull/24294): BUG: do not modify the input to ufunc_at - [24295](https://github.com/numpy/numpy/pull/24295): BUG: Further fixes to indexing loop and added tests Checksums MD5 33518ccb4da8ee11f1dee4b9fef1e468 numpy-1.25.2-cp310-cp310-macosx_10_9_x86_64.whl b5cb0c3b33ef6d93ec2888f25b065636 numpy-1.25.2-cp310-cp310-macosx_11_0_arm64.whl ae027dd38bd73f09c07220b2f516f148 numpy-1.25.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 88cf69dc3c0d293492c4c7e75dccf3d8 numpy-1.25.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 3e4e3ad02375ba71ae2cd05ccd97aba4 numpy-1.25.2-cp310-cp310-musllinux_1_1_x86_64.whl f52bb644682deb26c35ddec77198b65c numpy-1.25.2-cp310-cp310-win32.whl 4944cf36652be7560a6bcd0d5d56e8ea numpy-1.25.2-cp310-cp310-win_amd64.whl 5a56e639defebb7b871c8c5613960ca3 numpy-1.25.2-cp311-cp311-macosx_10_9_x86_64.whl 3988b96944e7218e629255214f2598bd numpy-1.25.2-cp311-cp311-macosx_11_0_arm64.whl 302d65015ddd908a862fb3761a2a0363 numpy-1.25.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl e54a2e23272d1c5e5b278bd7e304c948 numpy-1.25.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 961d390e8ccaf11b1b0d6200d2c8b1c0 numpy-1.25.2-cp311-cp311-musllinux_1_1_x86_64.whl e113865b90f97079d344100c41226fbe numpy-1.25.2-cp311-cp311-win32.whl 834a147aa1adaec97655018b882232bd numpy-1.25.2-cp311-cp311-win_amd64.whl fb55f93a8033bde854c8a2b994045686 numpy-1.25.2-cp39-cp39-macosx_10_9_x86_64.whl d96e754217d29bf045e082b695667e62 numpy-1.25.2-cp39-cp39-macosx_11_0_arm64.whl beab540edebecbb257e482dd9e498b44 numpy-1.25.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl e0d608c9e09cd8feba48567586cfefc0 numpy-1.25.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl fe1fc32c8bb005ca04b8f10ebdcff6dd numpy-1.25.2-cp39-cp39-musllinux_1_1_x86_64.whl 41df58a9935c8ed869c92307c95f02eb numpy-1.25.2-cp39-cp39-win32.whl a4371272c64493beb8b04ac46c4c1521 numpy-1.25.2-cp39-cp39-win_amd64.whl bbe051cbd5f8661dd054277f0b0f0c3d numpy-1.25.2-pp39-pypy39_pp73-macosx_10_9_x86_64.whl 3f68e6b4af6922989dc0133e37db34ee numpy-1.25.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl fc89421b79e8800240999d3a1d06a4d2 numpy-1.25.2-pp39-pypy39_pp73-win_amd64.whl cee1996a80032d47bdf1d9d17249c34e numpy-1.25.2.tar.gz SHA256 db3ccc4e37a6873045580d413fe79b68e47a681af8db2e046f1dacfa11f86eb3 numpy-1.25.2-cp310-cp310-macosx_10_9_x86_64.whl 90319e4f002795ccfc9050110bbbaa16c944b1c37c0baeea43c5fb881693ae1f numpy-1.25.2-cp310-cp310-macosx_11_0_arm64.whl dfe4a913e29b418d096e696ddd422d8a5d13ffba4ea91f9f60440a3b759b0187 numpy-1.25.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl f08f2e037bba04e707eebf4bc934f1972a315c883a9e0ebfa8a7756eabf9e357 numpy-1.25.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl bec1e7213c7cb00d67093247f8c4db156fd03075f49876957dca4711306d39c9 numpy-1.25.2-cp310-cp310-musllinux_1_1_x86_64.whl 7dc869c0c75988e1c693d0e2d5b26034644399dd929bc049db55395b1379e044 numpy-1.25.2-cp310-cp310-win32.whl 834b386f2b8210dca38c71a6e0f4fd6922f7d3fcff935dbe3a570945acb1b545 numpy-1.25.2-cp310-cp310-win_amd64.whl c5462d19336db4560041517dbb7759c21d181a67cb01b36ca109b2ae37d32418 numpy-1.25.2-cp311-cp311-macosx_10_9_x86_64.whl c5652ea24d33585ea39eb6a6a15dac87a1206a692719ff45d53c5282e66d4a8f numpy-1.25.2-cp311-cp311-macosx_11_0_arm64.whl 0d60fbae8e0019865fc4784745814cff1c421df5afee233db6d88ab4f14655a2 numpy-1.25.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 60e7f0f7f6d0eee8364b9a6304c2845b9c491ac706048c7e8cf47b83123b8dbf numpy-1.25.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl bb33d5a1cf360304754913a350edda36d5b8c5331a8237268c48f91253c3a364 numpy-1.25.2-cp311-cp311-musllinux_1_1_x86_64.whl 5883c06bb92f2e6c8181df7b39971a5fb436288db58b5a1c3967702d4278691d numpy-1.25.2-cp311-cp311-win32.whl 5c97325a0ba6f9d041feb9390924614b60b99209a71a69c876f71052521d42a4 numpy-1.25.2-cp311-cp311-win_amd64.whl b79e513d7aac42ae918db3ad1341a015488530d0bb2a6abcbdd10a3a829ccfd3 numpy-1.25.2-cp39-cp39-macosx_10_9_x86_64.whl eb942bfb6f84df5ce05dbf4b46673ffed0d3da59f13635ea9b926af3deb76926 numpy-1.25.2-cp39-cp39-macosx_11_0_arm64.whl 3e0746410e73384e70d286f93abf2520035250aad8c5714240b0492a7302fdca numpy-1.25.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl d7806500e4f5bdd04095e849265e55de20d8cc4b661b038957354327f6d9b295 numpy-1.25.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 8b77775f4b7df768967a7c8b3567e309f617dd5e99aeb886fa14dc1a0791141f numpy-1.25.2-cp39-cp39-musllinux_1_1_x86_64.whl 2792d23d62ec51e50ce4d4b7d73de8f67a2fd3ea710dcbc8563a51a03fb07b01 numpy-1.25.2-cp39-cp39-win32.whl 76b4115d42a7dfc5d485d358728cdd8719be33cc5ec6ec08632a5d6fca2ed380 numpy-1.25.2-cp39-cp39-win_amd64.whl 1a1329e26f46230bf77b02cc19e900db9b52f398d6722ca853349a782d4cff55 numpy-1.25.2-pp39-pypy39_pp73-macosx_10_9_x86_64.whl 4c3abc71e8b6edba80a01a52e66d83c5d14433cbcd26a40c329ec7ed09f37901 numpy-1.25.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 1b9735c27cea5d995496f46a8b1cd7b408b3f34b6d50459d9ac8fe3a20cc17bf numpy-1.25.2-pp39-pypy39_pp73-win_amd64.whl fd608e19c8d7c55021dffd43bfe5492fab8cc105cc8986f813f8c3c048b38760 numpy-1.25.2.tar.gz ``` ### 1.25.1 ``` discovered after the 1.25.0 release. The Python versions supported by this release are 3.9-3.11. Contributors A total of 10 people contributed to this release. People with a \"+\" by their names contributed a patch for the first time. - Andrew Nelson - Charles Harris - Developer-Ecosystem-Engineering - Hood Chatham - Nathan Goldbaum - Rohit Goswami - Sebastian Berg - Tim Paine + - dependabot\[bot\] - matoro + Pull requests merged A total of 14 pull requests were merged for this release. - [23968](https://github.com/numpy/numpy/pull/23968): MAINT: prepare 1.25.x for further development - [24036](https://github.com/numpy/numpy/pull/24036): BLD: Port long double identification to C for meson - [24037](https://github.com/numpy/numpy/pull/24037): BUG: Fix reduction `return NULL` to be `goto fail` - [24038](https://github.com/numpy/numpy/pull/24038): BUG: Avoid undefined behavior in array.astype() - [24039](https://github.com/numpy/numpy/pull/24039): BUG: Ensure `__array_ufunc__` works without any kwargs passed - [24117](https://github.com/numpy/numpy/pull/24117): MAINT: Pin urllib3 to avoid anaconda-client bug. - [24118](https://github.com/numpy/numpy/pull/24118): TST: Pin pydantic\<2 in Pyodide workflow - [24119](https://github.com/numpy/numpy/pull/24119): MAINT: Bump pypa/cibuildwheel from 2.13.0 to 2.13.1 - [24120](https://github.com/numpy/numpy/pull/24120): MAINT: Bump actions/checkout from 3.5.2 to 3.5.3 - [24122](https://github.com/numpy/numpy/pull/24122): BUG: Multiply or Divides using SIMD without a full vector can\... - [24127](https://github.com/numpy/numpy/pull/24127): MAINT: testing for IS_MUSL closes #24074 - [24128](https://github.com/numpy/numpy/pull/24128): BUG: Only replace dtype temporarily if dimensions changed - [24129](https://github.com/numpy/numpy/pull/24129): MAINT: Bump actions/setup-node from 3.6.0 to 3.7.0 - [24134](https://github.com/numpy/numpy/pull/24134): BUG: Fix private procedures in f2py modules Checksums MD5 d09d98643db31e892fad11b8c2b7af22 numpy-1.25.1-cp310-cp310-macosx_10_9_x86_64.whl d5b8d3b0424e2af41018f35a087c4500 numpy-1.25.1-cp310-cp310-macosx_11_0_arm64.whl 1007893b1a8bfd97d445a63d29d33642 numpy-1.25.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 6a62d7a6cee310b41dc872aa7f3d7e8b numpy-1.25.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl e81f6264aecfa2269c5d29d10c362cbc numpy-1.25.1-cp310-cp310-musllinux_1_1_x86_64.whl ab8ecd125ca86eac0b3ada67ab66dad6 numpy-1.25.1-cp310-cp310-win32.whl 5466bebeaafcc3d6e1b98858d77ff945 numpy-1.25.1-cp310-cp310-win_amd64.whl f31b059256ae09b7b83df63f52d8371e numpy-1.25.1-cp311-cp311-macosx_10_9_x86_64.whl 099f74d654888869704469c321af845d numpy-1.25.1-cp311-cp311-macosx_11_0_arm64.whl 20d04dccd2bfca5cfd88780d1dc9a3f8 numpy-1.25.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 61dfd7c00638e83a7af59b86615ee9d2 numpy-1.25.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 4eb459c3d9479c4da2fdf20e4c4085d0 numpy-1.25.1-cp311-cp311-musllinux_1_1_x86_64.whl 5e84e797866c68ba65fa89a4bf4ba8ce numpy-1.25.1-cp311-cp311-win32.whl 87bb1633b2e8029dbfa1e59f7ab22625 numpy-1.25.1-cp311-cp311-win_amd64.whl 3fcf2eb5970d848a26abdff1b10228e7 numpy-1.25.1-cp39-cp39-macosx_10_9_x86_64.whl d71e1cbe18fe05944219e5a5be1796bf numpy-1.25.1-cp39-cp39-macosx_11_0_arm64.whl 5b457e10834c991bca84aae7eaa49f34 numpy-1.25.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 5cbb4c2f2892fafdf6f34fcb37c9e743 numpy-1.25.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 7d9d1ae23cf5420652088bfe8e048d89 numpy-1.25.1-cp39-cp39-musllinux_1_1_x86_64.whl 7e5bed491b85f0d7c718d6809f9b3ed2 numpy-1.25.1-cp39-cp39-win32.whl 838e97b751bebadf47e2196b2c88ffa2 numpy-1.25.1-cp39-cp39-win_amd64.whl 9ba95d8d6004d9659d7728fe93f67be9 numpy-1.25.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl fbccb20254a2dc85bdec549a03b8eb56 numpy-1.25.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 95e36689e6dd078caf11e7e2a2d5f5f1 numpy-1.25.1-pp39-pypy39_pp73-win_amd64.whl 768d0ebf15e2242f4c7ca7565bb5dd3e numpy-1.25.1.tar.gz SHA256 77d339465dff3eb33c701430bcb9c325b60354698340229e1dff97745e6b3efa numpy-1.25.1-cp310-cp310-macosx_10_9_x86_64.whl d736b75c3f2cb96843a5c7f8d8ccc414768d34b0a75f466c05f3a739b406f10b numpy-1.25.1-cp310-cp310-macosx_11_0_arm64.whl 4a90725800caeaa160732d6b31f3f843ebd45d6b5f3eec9e8cc287e30f2805bf numpy-1.25.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 6c6c9261d21e617c6dc5eacba35cb68ec36bb72adcff0dee63f8fbc899362588 numpy-1.25.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 0def91f8af6ec4bb94c370e38c575855bf1d0be8a8fbfba42ef9c073faf2cf19 numpy-1.25.1-cp310-cp310-musllinux_1_1_x86_64.whl fd67b306320dcadea700a8f79b9e671e607f8696e98ec255915c0c6d6b818503 numpy-1.25.1-cp310-cp310-win32.whl c1516db588987450b85595586605742879e50dcce923e8973f79529651545b57 numpy-1.25.1-cp310-cp310-win_amd64.whl 6b82655dd8efeea69dbf85d00fca40013d7f503212bc5259056244961268b66e numpy-1.25.1-cp311-cp311-macosx_10_9_x86_64.whl e8f6049c4878cb16960fbbfb22105e49d13d752d4d8371b55110941fb3b17800 numpy-1.25.1-cp311-cp311-macosx_11_0_arm64.whl 41a56b70e8139884eccb2f733c2f7378af06c82304959e174f8e7370af112e09 numpy-1.25.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl d5154b1a25ec796b1aee12ac1b22f414f94752c5f94832f14d8d6c9ac40bcca6 numpy-1.25.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 38eb6548bb91c421261b4805dc44def9ca1a6eef6444ce35ad1669c0f1a3fc5d numpy-1.25.1-cp311-cp311-musllinux_1_1_x86_64.whl 791f409064d0a69dd20579345d852c59822c6aa087f23b07b1b4e28ff5880fcb numpy-1.25.1-cp311-cp311-win32.whl c40571fe966393b212689aa17e32ed905924120737194b5d5c1b20b9ed0fb171 numpy-1.25.1-cp311-cp311-win_amd64.whl 3d7abcdd85aea3e6cdddb59af2350c7ab1ed764397f8eec97a038ad244d2d105 numpy-1.25.1-cp39-cp39-macosx_10_9_x86_64.whl 1a180429394f81c7933634ae49b37b472d343cccb5bb0c4a575ac8bbc433722f numpy-1.25.1-cp39-cp39-macosx_11_0_arm64.whl d412c1697c3853c6fc3cb9751b4915859c7afe6a277c2bf00acf287d56c4e625 numpy-1.25.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 20e1266411120a4f16fad8efa8e0454d21d00b8c7cee5b5ccad7565d95eb42dd numpy-1.25.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl f76aebc3358ade9eacf9bc2bb8ae589863a4f911611694103af05346637df1b7 numpy-1.25.1-cp39-cp39-musllinux_1_1_x86_64.whl 247d3ffdd7775bdf191f848be8d49100495114c82c2bd134e8d5d075fb386a1c numpy-1.25.1-cp39-cp39-win32.whl 1d5d3c68e443c90b38fdf8ef40e60e2538a27548b39b12b73132456847f4b631 numpy-1.25.1-cp39-cp39-win_amd64.whl 35a9527c977b924042170a0887de727cd84ff179e478481404c5dc66b4170009 numpy-1.25.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl 0d3fe3dd0506a28493d82dc3cf254be8cd0d26f4008a417385cbf1ae95b54004 numpy-1.25.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 012097b5b0d00a11070e8f2e261128c44157a8689f7dedcf35576e525893f4fe numpy-1.25.1-pp39-pypy39_pp73-win_amd64.whl 9a3a9f3a61480cc086117b426a8bd86869c213fc4072e606f01c4e4b66eb92bf numpy-1.25.1.tar.gz ``` ### 1.25.0 ``` The NumPy 1.25.0 release continues the ongoing work to improve the handling and promotion of dtypes, increase the execution speed, and clarify the documentation. There has also been work to prepare for the future NumPy 2.0.0 release, resulting in a large number of new and expired deprecation. Highlights are: - Support for MUSL, there are now MUSL wheels. - Support the Fujitsu C/C++ compiler. - Object arrays are now supported in einsum - Support for inplace matrix multiplication (`=`). We will be releasing a NumPy 1.26 when Python 3.12 comes out. That is needed because distutils has been dropped by Python 3.12 and we will be switching to using meson for future builds. The next mainline release will be NumPy 2.0.0. We plan that the 2.0 series will still support downstream projects built against earlier versions of NumPy. The Python versions supported in this release are 3.9-3.11. Deprecations - `np.core.MachAr` is deprecated. It is private API. In names defined in `np.core` should generally be considered private. ([gh-22638](https://github.com/numpy/numpy/pull/22638)) - `np.finfo(None)` is deprecated. ([gh-23011](https://github.com/numpy/numpy/pull/23011)) - `np.round_` is deprecated. Use `np.round` instead. ([gh-23302](https://github.com/numpy/numpy/pull/23302)) - `np.product` is deprecated. Use `np.prod` instead. ([gh-23314](https://github.com/numpy/numpy/pull/23314)) - `np.cumproduct` is deprecated. Use `np.cumprod` instead. ([gh-23314](https://github.com/numpy/numpy/pull/23314)) - `np.sometrue` is deprecated. Use `np.any` instead. ([gh-23314](https://github.com/numpy/numpy/pull/23314)) - `np.alltrue` is deprecated. Use `np.all` instead. ([gh-23314](https://github.com/numpy/numpy/pull/23314)) - Only ndim-0 arrays are treated as scalars. NumPy used to treat all arrays of size 1 (e.g., `np.array([3.14])`) as scalars. In the future, this will be limited to arrays of ndim 0 (e.g., `np.array(3.14)`). The following expressions will report a deprecation warning: python a = np.array([3.14]) float(a) better: a[0] to get the numpy.float or a.item() b = np.array([[3.14]]) c = numpy.random.rand(10) c[0] = b better: c[0] = b[0, 0] ([gh-10615](https://github.com/numpy/numpy/pull/10615)) - `numpy.find_common_type` is now deprecated and its use should be replaced with either `numpy.result_type` or `numpy.promote_types`. Most users leave the second `scalar_types` argument to `find_common_type` as `[]` in which case `np.result_type` and `np.promote_types` are both faster and more robust. When not using `scalar_types` the main difference is that the replacement intentionally converts non-native byte-order to native byte order. Further, `find_common_type` returns `object` dtype rather than failing promotion. This leads to differences when the inputs are not all numeric. Importantly, this also happens for e.g. timedelta/datetime for which NumPy promotion rules are currently sometimes surprising. When the `scalar_types` argument is not `[]` things are more complicated. In most cases, using `np.result_type` and passing the Python values `0`, `0.0`, or `0j` has the same result as using `int`, `float`, or `complex` in `scalar_types`. When `scalar_types` is constructed, `np.result_type` is the correct replacement and it may be passed scalar values like `np.float32(0.0)`. Passing values other than 0, may lead to value-inspecting behavior (which `np.find_common_type` never used and NEP 50 may change in the future). The main possible change in behavior in this case, is when the array types are signed integers and scalar types are unsigned. If you are unsure about how to replace a use of `scalar_types` or when non-numeric dtypes are likely, please do not hesitate to open a NumPy issue to ask for help. ([gh-22539](https://github.com/numpy/numpy/pull/22539)) Expired deprecations - `np.core.machar` and `np.finfo.machar` have been removed. ([gh-22638](https://github.com/numpy/numpy/pull/22638)) - `+arr` will now raise an error when the dtype is not numeric (and positive is undefined). ([gh-22998](https://github.com/numpy/numpy/pull/22998)) - A sequence must now be passed into the stacking family of functions (`stack`, `vstack`, `hstack`, `dstack` and `column_stack`). ([gh-23019](https://github.com/numpy/numpy/pull/23019)) - `np.clip` now defaults to same-kind casting. Falling back to unsafe casting was deprecated in NumPy 1.17. ([gh-23403](https://github.com/numpy/numpy/pull/23403)) - `np.clip` will now propagate `np.nan` values passed as `min` or `max`. Previously, a scalar NaN was usually ignored. This was deprecated in NumPy 1.17. ([gh-23403](https://github.com/numpy/numpy/pull/23403)) - The `np.dual` submodule has been removed. ([gh-23480](https://github.com/numpy/numpy/pull/23480)) - NumPy now always ignores sequence behavior for an array-like (defining one of the array protocols). (Deprecation started NumPy 1.20) ([gh-23660](https://github.com/numpy/numpy/pull/23660)) - The niche `FutureWarning` when casting to a subarray dtype in `astype` or the array creation functions such as `asarray` is now finalized. The behavior is now always the same as if the subarray dtype was wrapped into a single field (which was the workaround, previously). (FutureWarning since NumPy 1.20) ([gh-23666](https://github.com/numpy/numpy/pull/23666)) - `==` and `!=` warnings have been finalized. The `==` and `!=` operators on arrays now always: - raise errors that occur during comparisons such as when the arrays have incompatible shapes (`np.array([1, 2]) == np.array([1, 2, 3])`). - return an array of all `True` or all `False` when values are fundamentally not comparable (e.g. have different dtypes). An example is `np.array(["a"]) == np.array([1])`. This mimics the Python behavior of returning `False` and `True` when comparing incompatible types like `"a" == 1` and `"a" != 1`. For a long time these gave `DeprecationWarning` or `FutureWarning`. ([gh-22707](https://github.com/numpy/numpy/pull/22707)) - Nose support has been removed. NumPy switched to using pytest in 2018 and nose has been unmaintained for many years. We have kept NumPy\'s nose support to avoid breaking downstream projects who might have been using it and not yet switched to pytest or some other testing framework. With the arrival of Python 3.12, unpatched nose will raise an error. It is time to move on. *Decorators removed*: - raises - slow - setastest - skipif - knownfailif - deprecated - parametrize - \_needs_refcount These are not to be confused with pytest versions with similar names, e.g., pytest.mark.slow, pytest.mark.skipif, pytest.mark.parametrize. *Functions removed*: - Tester - import_nose - run_module_suite ([gh-23041](https://github.com/numpy/numpy/pull/23041)) - The `numpy.testing.utils` shim has been removed. Importing from the `numpy.testing.utils` shim has been deprecated since 2019, the shim has now been removed. All imports should be made directly from `numpy.testing`. ([gh-23060](https://github.com/numpy/numpy/pull/23060)) - The environment variable to disable dispatching has been removed. Support for the `NUMPY_EXPERIMENTAL_ARRAY_FUNCTION` environment variable has been removed. This variable disabled dispatching with `__array_function__`. ([gh-23376](https://github.com/numpy/numpy/pull/23376)) - Support for `y=` as an alias of `out=` has been removed. The `fix`, `isposinf` and `isneginf` functions allowed using `y=` as a (deprecated) alias for `out=`. This is no longer supported. ([gh-23376](https://github.com/numpy/numpy/pull/23376)) Compatibility notes - The `busday_count` method now correctly handles cases where the `begindates` is later in time than the `enddates`. Previously, the `enddates` was included, even though the documentation states it is always excluded. ([gh-23229](https://github.com/numpy/numpy/pull/23229)) - When comparing datetimes and timedelta using `np.equal` or `np.not_equal` numpy previously allowed the comparison with `casting="unsafe"`. This operation now fails. Forcing the output dtype using the `dtype` kwarg can make the operation succeed, but we do not recommend it. ([gh-22707](https://github.com/numpy/numpy/pull/22707)) - When loading data from a file handle using `np.load`, if the handle is at the end of file, as can happen when reading multiple arrays by calling `np.load` repeatedly, numpy previously raised `ValueError` if `allow_pickle=False`, and `OSError` if `allow_pickle=True`. Now it raises `EOFError` instead, in both cases. ([gh-23105](https://github.com/numpy/numpy/pull/23105)) `np.pad` with `mode=wrap` pads with strict multiples of original data Code based on earlier version of `pad` that uses `mode="wrap"` will return different results when the padding size is larger than initial array. `np.pad` with `mode=wrap` now always fills the space with strict multiples of original data even if the padding size is larger than the initial array. ([gh-22575](https://github.com/numpy/numpy/pull/22575)) Cython `long_t` and `ulong_t` removed `long_t` and `ulong_t` were aliases for `longlong_t` and `ulonglong_t` and confusing (a remainder from of Python 2). This change may lead to the errors: 'long_t' is not a type identifier 'ulong_t' is not a type identifier We recommend use of bit-sized types such as `cnp.int64_t` or the use of `cnp.intp_t` which is 32 bits on 32 bit systems and 64 bits on 64 bit systems (this is most compatible with indexing). If C `long` is desired, use plain `long` or `npy_long`. `cnp.int_t` is also `long` (NumPy\'s default integer). However, `long` is 32 bit on 64 bit windows and we may wish to adjust this even in NumPy. (Please do not hesitate to contact NumPy developers if you are curious about this.) ([gh-22637](https://github.com/numpy/numpy/pull/22637)) Changed error message and type for bad `axes` argument to `ufunc` The error message and type when a wrong `axes` value is passed to `ufunc(..., axes=[...])` has changed. The message is now more indicative of the problem, and if the value is mismatched an `AxisError` will be raised. A `TypeError` will still be raised for invalidinput types. ([gh-22675](https://github.com/numpy/numpy/pull/22675)) Array-likes that define `__array_ufunc__` can now override ufuncs if used as `where` If the `where` keyword argument of a `numpy.ufunc`{.interpreted-text role="class"} is a subclass of `numpy.ndarray`{.interpreted-text role="class"} or is a duck type that defines `numpy.class.__array_ufunc__`{.interpreted-text role="func"} it can override the behavior of the ufunc using the same mechanism as the input and output arguments. Note that for this to work properly, the `where.__array_ufunc__` implementation will have to unwrap the `where` argument to pass it into the default implementation of the `ufunc` or, for `numpy.ndarray`{.interpreted-text role="class"} subclasses before using `super().__array_ufunc__`. ([gh-23240](https://github.com/numpy/numpy/pull/23240)) Compiling against the NumPy C API is now backwards compatible by default NumPy now defaults to exposing a backwards compatible subset of the C-API. This makes the use of `oldest-supported-numpy` unnecessary. Libraries can override the default minimal version to be compatible with using: define NPY_TARGET_VERSION NPY_1_22_API_VERSION before including NumPy or by passing the equivalent `-D` option to the compiler. The NumPy 1.25 default is `NPY_1_19_API_VERSION`. Because the ``` ### 1.24.4 ``` discovered after the 1.24.3 release. It is the last planned release in the 1.24.x cycle. The Python versions supported by this release are 3.8-3.11. Contributors A total of 4 people contributed to this release. People with a \"+\" by their names contributed a patch for the first time. - Bas van Beek - Charles Harris - Sebastian Berg - Hongyang Peng + Pull requests merged A total of 6 pull requests were merged for this release. - [23720](https://github.com/numpy/numpy/pull/23720): MAINT, BLD: Pin rtools to version 4.0 for Windows builds. - [23739](https://github.com/numpy/numpy/pull/23739): BUG: fix the method for checking local files for 1.24.x - [23760](https://github.com/numpy/numpy/pull/23760): MAINT: Copy rtools installation from install-rtools. - [23761](https://github.com/numpy/numpy/pull/23761): BUG: Fix masked array ravel order for A (and somewhat K) - [23890](https://github.com/numpy/numpy/pull/23890): TYP,DOC: Annotate and document the `metadata` parameter of\... - [23994](https://github.com/numpy/numpy/pull/23994): MAINT: Update rtools installation Checksums MD5 25049e3aee79dde29e7a498d3ad13379 numpy-1.24.4-cp310-cp310-macosx_10_9_x86_64.whl 579b5c357c918feaef4af03af8afb721 numpy-1.24.4-cp310-cp310-macosx_11_0_arm64.whl c873a14fa4f0210884db9c05e2904286 numpy-1.24.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 110a13ac016286059f0658b52b3646c0 numpy-1.24.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl fa67218966c0aef4094867cad7703648 numpy-1.24.4-cp310-cp310-win32.whl 6ee768803d8ebac43ee0a04e628a69f9 numpy-1.24.4-cp310-cp310-win_amd64.whl 0c918c16b58cb7f6773ea7d76e0bdaff numpy-1.24.4-cp311-cp311-macosx_10_9_x86_64.whl 20506ae8003faf097c6b3a8915b4140e numpy-1.24.4-cp311-cp311-macosx_11_0_arm64.whl 902df9d5963e89d88a1939d94207857f numpy-1.24.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 2543611d802c141c8276e4868b4d9619 numpy-1.24.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 37b23a4e4e148d61dd3a515ac5dbf7ec numpy-1.24.4-cp311-cp311-win32.whl 25e9f6bee2b65ff2a87588e717f15165 numpy-1.24.4-cp311-cp311-win_amd64.whl f39a0cc3655a482af7d300bcaff5978e numpy-1.24.4-cp38-cp38-macosx_10_9_x86_64.whl 9ed27941388fdb392e8969169f3fc600 numpy-1.24.4-cp38-cp38-macosx_11_0_arm64.whl dee3f0c7482f1dc8bd1cd27b9b028a2c numpy-1.24.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 2cc0967af29df3caef9fb3520f14e071 numpy-1.24.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 8572a3a0973fa78355bcb5f737745b47 numpy-1.24.4-cp38-cp38-win32.whl 771c63f2ef0d31466bbb12362a532265 numpy-1.24.4-cp38-cp38-win_amd64.whl 5713d9dc3dff287fb72121fe1960c48d numpy-1.24.4-cp39-cp39-macosx_10_9_x86_64.whl 4e6718e3b655219a2a733b4fa242ca32 numpy-1.24.4-cp39-cp39-macosx_11_0_arm64.whl 31487f9a52ef81f8f88ec7fce8738dad numpy-1.24.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl ea597b30187e55eb16ee31631e66f60d numpy-1.24.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 98adbf30c67154056474001c125f6188 numpy-1.24.4-cp39-cp39-win32.whl 49c444b0e572ef45f1d92c106a36004e numpy-1.24.4-cp39-cp39-win_amd64.whl cdddfdeac437b0f20b4e366f00b5c42e numpy-1.24.4-pp38-pypy38_pp73-macosx_10_9_x86_64.whl 3778338c15628caa3abd61e6f7bd46ec numpy-1.24.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl e16bd49d5295dc1b01ed50d76229fb54 numpy-1.24.4-pp38-pypy38_pp73-win_amd64.whl 3f3995540a17854a29dc79f8eeecd832 numpy-1.24.4.tar.gz SHA256 c0bfb52d2169d58c1cdb8cc1f16989101639b34c7d3ce60ed70b19c63eba0b64 numpy-1.24.4-cp310-cp310-macosx_10_9_x86_64.whl ed094d4f0c177b1b8e7aa9cba7d6ceed51c0e569a5318ac0ca9a090680a6a1b1 numpy-1.24.4-cp310-cp310-macosx_11_0_arm64.whl 79fc682a374c4a8ed08b331bef9c5f582585d1048fa6d80bc6c35bc384eee9b4 numpy-1.24.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 7ffe43c74893dbf38c2b0a1f5428760a1a9c98285553c89e12d70a96a7f3a4d6 numpy-1.24.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 4c21decb6ea94057331e111a5bed9a79d335658c27ce2adb580fb4d54f2ad9bc numpy-1.24.4-cp310-cp310-win32.whl b4bea75e47d9586d31e892a7401f76e909712a0fd510f58f5337bea9572c571e numpy-1.24.4-cp310-cp310-win_amd64.whl f136bab9c2cfd8da131132c2cf6cc27331dd6fae65f95f69dcd4ae3c3639c810 numpy-1.24.4-cp311-cp311-macosx_10_9_x86_64.whl e2926dac25b313635e4d6cf4dc4e51c8c0ebfed60b801c799ffc4c32bf3d1254 numpy-1.24.4-cp311-cp311-macosx_11_0_arm64.whl 222e40d0e2548690405b0b3c7b21d1169117391c2e82c378467ef9ab4c8f0da7 numpy-1.24.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 7215847ce88a85ce39baf9e89070cb860c98fdddacbaa6c0da3ffb31b3350bd5 numpy-1.24.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 4979217d7de511a8d57f4b4b5b2b965f707768440c17cb70fbf254c4b225238d numpy-1.24.4-cp311-cp311-win32.whl b7b1fc9864d7d39e28f41d089bfd6353cb5f27ecd9905348c24187a768c79694 numpy-1.24.4-cp311-cp311-win_amd64.whl 1452241c290f3e2a312c137a9999cdbf63f78864d63c79039bda65ee86943f61 numpy-1.24.4-cp38-cp38-macosx_10_9_x86_64.whl 04640dab83f7c6c85abf9cd729c5b65f1ebd0ccf9de90b270cd61935eef0197f numpy-1.24.4-cp38-cp38-macosx_11_0_arm64.whl a5425b114831d1e77e4b5d812b69d11d962e104095a5b9c3b641a218abcc050e numpy-1.24.4-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl dd80e219fd4c71fc3699fc1dadac5dcf4fd882bfc6f7ec53d30fa197b8ee22dc numpy-1.24.4-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 4602244f345453db537be5314d3983dbf5834a9701b7723ec28923e2889e0bb2 numpy-1.24.4-cp38-cp38-win32.whl 692f2e0f55794943c5bfff12b3f56f99af76f902fc47487bdfe97856de51a706 numpy-1.24.4-cp38-cp38-win_amd64.whl 2541312fbf09977f3b3ad449c4e5f4bb55d0dbf79226d7724211acc905049400 numpy-1.24.4-cp39-cp39-macosx_10_9_x86_64.whl 9667575fb6d13c95f1b36aca12c5ee3356bf001b714fc354eb5465ce1609e62f numpy-1.24.4-cp39-cp39-macosx_11_0_arm64.whl f3a86ed21e4f87050382c7bc96571755193c4c1392490744ac73d660e8f564a9 numpy-1.24.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl d11efb4dbecbdf22508d55e48d9c8384db795e1b7b51ea735289ff96613ff74d numpy-1.24.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 6620c0acd41dbcb368610bb2f4d83145674040025e5536954782467100aa8835 numpy-1.24.4-cp39-cp39-win32.whl befe2bf740fd8373cf56149a5c23a0f601e82869598d41f8e188a0e9869926f8 numpy-1.24.4-cp39-cp39-win_amd64.whl 31f13e25b4e304632a4619d0e0777662c2ffea99fcae2029556b17d8ff958aef numpy-1.24.4-pp38-pypy38_pp73-macosx_10_9_x86_64.whl 95f7ac6540e95bc440ad77f56e520da5bf877f87dca58bd095288dce8940532a numpy-1.24.4-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl e98f220aa76ca2a977fe435f5b04d7b3470c0a2e6312907b37ba6068f26787f2 numpy-1.24.4-pp38-pypy38_pp73-win_amd64.whl 80f5e3a4e498641401868df4208b74581206afbee7cf7b8329daae82676d9463 numpy-1.24.4.tar.gz ``` ### 1.24.3 ``` discovered after the 1.24.2 release. The Python versions supported by this release are 3.8-3.11. Contributors A total of 12 people contributed to this release. People with a \"+\" by their names contributed a patch for the first time. - Aleksei Nikiforov + - Alexander Heger - Bas van Beek - Bob Eldering - Brock Mendel - Charles Harris - Kyle Sunden - Peter Hawkins - Rohit Goswami - Sebastian Berg - Warren Weckesser - dependabot\[bot\] Pull requests merged A total of 17 pull requests were merged for this release. - [23206](https://github.com/numpy/numpy/pull/23206): BUG: fix for f2py string scalars (#23194) - [23207](https://github.com/numpy/numpy/pull/23207): BUG: datetime64/timedelta64 comparisons return NotImplemented - [23208](https://github.com/numpy/numpy/pull/23208): MAINT: Pin matplotlib to version 3.6.3 for refguide checks - [23221](https://github.com/numpy/numpy/pull/23221): DOC: Fix matplotlib error in documentation - [23226](https://github.com/numpy/numpy/pull/23226): CI: Ensure submodules are initialized in gitpod. - [23341](https://github.com/numpy/numpy/pull/23341): TYP: Replace duplicate reduce in ufunc type signature with reduceat. - [23342](https://github.com/numpy/numpy/pull/23342): TYP: Remove duplicate CLIP/WRAP/RAISE in `__init__.pyi`. - [23343](https://github.com/numpy/numpy/pull/23343): TYP: Mark `d` argument to fftfreq and rfftfreq as optional\... - [23344](https://github.com/numpy/numpy/pull/23344): TYP: Add type annotations for comparison operators to MaskedArray. - [23345](https://github.com/numpy/numpy/pull/23345): TYP: Remove some stray type-check-only imports of `msort` - [23370](https://github.com/numpy/numpy/pull/23370): BUG: Ensure like is only stripped for `like=` dispatched functions - [23543](https://github.com/numpy/numpy/pull/23543): BUG: fix loading and storing big arrays on s390x - [23544](https://github.com/numpy/numpy/pull/23544): MAINT: Bump larsoner/circleci-artifacts-redirector-action - [23634](https://github.com/numpy/numpy/pull/23634): BUG: Ignore invalid and overflow warnings in masked setitem - [23635](https://github.com/numpy/numpy/pull/23635): BUG: Fix masked array raveling when `order="A"` or `order="K"` - [23636](https://github.com/numpy/numpy/pull/23636): MAINT: Update conftest for newer hypothesis versions - [23637](https://github.com/numpy/numpy/pull/23637): BUG: Fix bug in parsing F77 style string arrays. Checksums MD5 93a3ce07e3773842c54d831f18e3eb8d numpy-1.24.3-cp310-cp310-macosx_10_9_x86_64.whl 39691ff3d1612438dfcd3266c9765aab numpy-1.24.3-cp310-cp310-macosx_11_0_arm64.whl a99234799a239e7e9c6fa15c212996df numpy-1.24.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 3673aa638746851dd19d5199e1eb3a91 numpy-1.24.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 3c72962360bcd0938a6bddee6cdca766 numpy-1.24.3-cp310-cp310-win32.whl a3329efa646012fa4ee06ce5e08eadaf numpy-1.24.3-cp310-cp310-win_amd64.whl 5323fb0323d1ec10ee3c35a2fa79cbcd numpy-1.24.3-cp311-cp311-macosx_10_9_x86_64.whl cfa001dcd07cdf6414ced433e88959d4 numpy-1.24.3-cp311-cp311-macosx_11_0_arm64.whl d75bbfb06ed00d04232dce0e865eb42c numpy-1.24.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl fe18b810bcf284572467ce585dbc533b numpy-1.24.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl e97699a4ef96a81e0916bdf15440abe0 numpy-1.24.3-cp311-cp311-win32.whl e6de5b7d77dc43ed47f516eb10bbe8b6 numpy-1.24.3-cp311-cp311-win_amd64.whl dd04ebf441a8913f4900b56e7a33a75e numpy-1.24.3-cp38-cp38-macosx_10_9_x86_64.whl e47ac5521b0bfc3effb040072d8a7902 numpy-1.24.3-cp38-cp38-macosx_11_0_arm64.whl 7b7dae3309e7ca8a8859633a5d337431 numpy-1.24.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 8cc87b88163ed84e70c48fd0f5f8f20e numpy-1.24.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 350934bae971d0ebe231a59b640069db numpy-1.24.3-cp38-cp38-win32.whl c4708ef009bb5d427ea94a4fc4a10e12 numpy-1.24.3-cp38-cp38-win_amd64.whl 44b08a293a4e12d62c27b8f15ba5664e numpy-1.24.3-cp39-cp39-macosx_10_9_x86_64.whl 3ae7ac30f86c720e42b2324a0ae1adf5 numpy-1.24.3-cp39-cp39-macosx_11_0_arm64.whl 065464a8d918c670c7863d1e72e3e6dd numpy-1.24.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 1f163b9ea417c253e84480aa8d99dee6 numpy-1.24.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl c86e648389e333e062bea11c749b9a32 numpy-1.24.3-cp39-cp39-win32.whl bfe332e577c604d6d62a57381e6aa0a6 numpy-1.24.3-cp39-cp39-win_amd64.whl 374695eeef5aca32a5b7f2f518dd3ba1 numpy-1.24.3-pp38-pypy38_pp73-macosx_10_9_x86_64.whl 6abd9dba54405182e6e7bb32dbe377bb numpy-1.24.3-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl 0848bd41c08dd5ebbc5a7f0788678e0e numpy-1.24.3-pp38-pypy38_pp73-win_amd64.whl 89e5e2e78407032290ae6acf6dcaea46 numpy-1.24.3.tar.gz SHA256 3c1104d3c036fb81ab923f507536daedc718d0ad5a8707c6061cdfd6d184e570 numpy-1.24.3-cp310-cp310-macosx_10_9_x86_64.whl 202de8f38fc4a45a3eea4b63e2f376e5f2dc64ef0fa692838e31a808520efaf7 numpy-1.24.3-cp310-cp310-macosx_11_0_arm64.whl 8535303847b89aa6b0f00aa1dc62867b5a32923e4d1681a35b5eef2d9591a463 numpy-1.24.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl 2d926b52ba1367f9acb76b0df6ed21f0b16a1ad87c6720a1121674e5cf63e2b6 numpy-1.24.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl f21c442fdd2805e91799fbe044a7b999b8571bb0ab0f7850d0cb9641a687092b numpy-1.24.3-cp310-cp310-win32.whl ab5f23af8c16022663a652d3b25dcdc272ac3f83c3af4c02eb8b824e6b3ab9d7 numpy-1.24.3-cp310-cp310-win_amd64.whl 9a7721ec204d3a237225db3e194c25268faf92e19338a35f3a224469cb6039a3 numpy-1.24.3-cp311-cp311-macosx_10_9_x86_64.whl d6cc757de514c00b24ae8cf5c876af2a7c3df189028d68c0cb4eaa9cd5afc2bf numpy-1.24.3-cp311-cp311-macosx_11_0_arm64.whl 76e3f4e85fc5d4fd311f6e9b794d0c00e7002ec122be271f2019d63376f1d385 numpy-1.24.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl a1d3c026f57ceaad42f8231305d4653d5f05dc6332a730ae5c0bea3513de0950 numpy-1.24.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl c91c4afd8abc3908e00a44b2672718905b8611503f7ff87390cc0ac3423fb096 numpy-1.24.3-cp311-cp311-win32.whl 5342cf6aad47943286afa6f1609cad9b4266a05e7f2ec408e2cf7aea7ff69d80 numpy-1.24.3-cp311-cp311-win_amd64.whl 7776ea65423ca6a15255ba1872d82d207bd1e09f6