Open adku1173 opened 7 months ago
including:
Reproduce with:
import acoular from acoular import L_p, Calib, MicGeom, Environment, PowerSpectra, \ RectGrid, MaskedTimeSamples,BeamformerCMF, SteeringVector # other imports from os import path from pylab import figure, imshow, colorbar, title # files datafile = 'example_data.h5' calibfile = 'example_calib.xml' micgeofile = path.join( path.split(acoular.__file__)[0],'xml','array_56.xml') #octave band of interest cfreq = 4000 t1 = MaskedTimeSamples(name=datafile) t1.start = 0 # first sample, default t1.stop = 16000 # last valid sample = 15999 invalid = [1,7] # list of invalid channels (unwanted microphones etc.) t1.invalid_channels = invalid t1.calib = Calib(from_file=calibfile) m = MicGeom(from_file=micgeofile) m.invalid_channels = invalid g = RectGrid(x_min=-0.6, x_max=-0.0, y_min=-0.3, y_max=0.3, z=0.68, increment=0.05) env = Environment(c = 346.04) st = SteeringVector(grid=g, mics=m, env=env) f = PowerSpectra(time_data=t1, window='Hanning', overlap='50%', block_size=128, #FFT-parameters ind_low=8, ind_high=16) #to save computational effort, only # frequencies with indices 8..15 are used bcmf = BeamformerCMF(freq_data=f, steer=st, method='LassoLars') figure(1,(10,6)) smap = bcmf.synthetic(cfreq,1) print(smap.min())
For sklearn solvers there is a new positive parameter which can be set to enforce strictly non-negative results.
positive
including:
Reproduce with: