The current docstring contains the following relation:
$$
\begin{equation}
\frac{
X \sim \operatorname{N}\left(\mu_x, \sigma_x^2\right), \quad
Y \sim \operatorname{N}\left(\mu_y, \sigma_y^2\right), \quad
X + Y = Z
}{
Z \sim \operatorname{N}\left(\mu_x + \mu_y, \sigma_x^2 + \sigma_y^2\right)
}
\end{equation}
$$
when we want:
$$
\begin{equation}
\frac{
Y \sim \operatorname{P}(0, 1), \quad
X = \mu + \sigma\,Y
}{
X \sim \operatorname{P}\left(\mu, \sigma\right)
}
\end{equation}
$$
The current docstring contains the following relation:
$$
\begin{equation} \frac{ X \sim \operatorname{N}\left(\mu_x, \sigma_x^2\right), \quad Y \sim \operatorname{N}\left(\mu_y, \sigma_y^2\right), \quad X + Y = Z }{ Z \sim \operatorname{N}\left(\mu_x + \mu_y, \sigma_x^2 + \sigma_y^2\right) } \end{equation} $$
when we want:
$$ \begin{equation} \frac{ Y \sim \operatorname{P}(0, 1), \quad X = \mu + \sigma\,Y }{ X \sim \operatorname{P}\left(\mu, \sigma\right) } \end{equation} $$