Hi, I wanna get predict_fake images from exported models to fix outputs.
in pix2pix.py line 476~
return Model( predict_real=predict_real, predict_fake=predict_fake, discrim_loss=ema.average(discrim_loss), discrim_grads_and_vars=discrim_grads_and_vars, gen_loss_GAN=ema.average(gen_loss_GAN), gen_loss_L1=ema.average(gen_loss_L1), gen_grads_and_vars=gen_grads_and_vars, outputs=outputs, train=tf.group(update_losses, incr_global_step, gen_train), )
There is predict_fake. so I think I can get it.
Please tell me, how to get predict_fake images from exported models.
I use the bellow code to generate images from reported models.
from __future__ import absolute_importfrom __future__ import divisionfrom __future__ import print_functionimport tensorflow as tfimport numpy as npimport argparseimport jsonimport base64
Hi, I wanna get predict_fake images from exported models to fix outputs. in pix2pix.py line 476~
return Model( predict_real=predict_real, predict_fake=predict_fake, discrim_loss=ema.average(discrim_loss), discrim_grads_and_vars=discrim_grads_and_vars, gen_loss_GAN=ema.average(gen_loss_GAN), gen_loss_L1=ema.average(gen_loss_L1), gen_grads_and_vars=gen_grads_and_vars, outputs=outputs, train=tf.group(update_losses, incr_global_step, gen_train), )
There is predict_fake. so I think I can get it.Please tell me, how to get predict_fake images from exported models.
I use the bellow code to generate images from reported models.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import tensorflow as tf
import numpy as np
import argparse
import json
import base64
parser = argparse.ArgumentParser()
parser.add_argument("--model_dir", required=True, help="directory containing exported model")
parser.add_argument("--input_file", required=True, help="input PNG image file")
parser.add_argument("--output_file", required=True, help="output PNG image file")
a = parser.parse_args()
def main():
with open(a.input_file, "rb") as f:
input_data = f.read()
input_instance = dict(input=base64.urlsafe_b64encode(input_data).decode("ascii"), key="0")
input_instance = json.loads(json.dumps(input_instance))
with tf.Session() as sess:
saver = tf.train.import_meta_graph(a.model_dir + "/export.meta")
saver.restore(sess, a.model_dir + "/export")
input_vars = json.loads(tf.get_collection("inputs")[0])
output_vars = json.loads(tf.get_collection("outputs")[0])
input = tf.get_default_graph().get_tensor_by_name(input_vars["input"])
output = tf.get_default_graph().get_tensor_by_name(output_vars["output"])
input_value = np.array(input_instance["input"])
output_value = sess.run(output, feed_dict={input: np.expand_dims(input_value, axis=0)})[0]
output_instance = dict(output=output_value.decode("ascii"), key="0")
b64data = output_instance["output"]
b64data += "=" * (-len(b64data) % 4)
output_data = base64.urlsafe_b64decode(b64data.encode("ascii"))
with open(a.output_file, "wb") as f:
f.write(output_data)
if __name__ == '__main__':
main()
Thank you!