Closed sunderved closed 10 months ago
A full example to reproduce the issue:
import pygad
import numpy
function_inputs = [4,-2,3.5,5,-11,-4.7]
desired_output = 44
def fitness_func(ga_instance, solution, solution_idx):
output = numpy.sum(solution*function_inputs)
solution_fitness = 1.0 / numpy.abs(output - desired_output)
print(ga_instance.generations_completed, solution_idx, solution_fitness)
return solution_fitness
def callback_generation(ga_instance):
solution, solution_fitness, solution_idx = ga_instance.best_solution()
print(' ---> End of generation', ga_instance.generations_completed, ":", solution_fitness)
num_generations = 2
num_parents_mating = 4
sol_per_pop = 10
mutation_percent_genes = 10
keep_parents = 1
num_genes = len(function_inputs)
init_range_low = -2
init_range_high = 5
parent_selection_type = "sss"
crossover_type = "single_point"
mutation_type = "random"
ga_instance = pygad.GA(num_generations=num_generations,
num_parents_mating=num_parents_mating,
fitness_func=fitness_func,
sol_per_pop=sol_per_pop,
num_genes=num_genes,
init_range_low=init_range_low,
init_range_high=init_range_high,
parent_selection_type=parent_selection_type,
keep_parents=keep_parents,
crossover_type=crossover_type,
mutation_type=mutation_type,
mutation_percent_genes=mutation_percent_genes,
on_generation=callback_generation)
ga_instance.run()
solution, solution_fitness, solution_idx = ga_instance.best_solution()
print("Parameters of the best solution : {solution}".format(solution=solution))
print("Fitness value of the best solution = {solution_fitness}".format(solution_fitness=solution_fitness))
prediction = numpy.sum(numpy.array(function_inputs)*solution)
print("Predicted output based on the best solution : {prediction}".format(prediction=prediction))
@sunderved how did you resolve this issue? I have a fitness function that takes a lot of time to execute it... it's a lost of time re-execute the same solution
The reason for this behavior is calling the best_solution()
method.
When it is called this way, then it forces the fitness function to be called against the latest generation's population.
solution, solution_fitness, solution_idx = ga_instance.best_solution()
To re-use the fitness instead of calling the fitness function, pass the pop_fitness parameter. It should be assigned to the fitness of the latest generation's population.
solution, solution_fitness, solution_idx = ga_instance.best_solution(pop_fitness=ga_instance.last_generation_fitness)
This new code does not call the fitness function again for the same population.
import pygad
import numpy
function_inputs = [4,-2,3.5,5,-11,-4.7]
desired_output = 44
def fitness_func(ga_instance, solution, solution_idx):
output = numpy.sum(solution*function_inputs)
solution_fitness = 1.0 / numpy.abs(output - desired_output)
print(ga_instance.generations_completed, solution_idx, solution_fitness)
return solution_fitness
def callback_generation(ga_instance):
solution, solution_fitness, solution_idx = ga_instance.best_solution(pop_fitness=ga_instance.last_generation_fitness)
print(' ---> End of generation', ga_instance.generations_completed, ":", solution_fitness)
num_generations = 2
num_parents_mating = 4
sol_per_pop = 10
mutation_percent_genes = 10
keep_parents = 1
num_genes = len(function_inputs)
init_range_low = -2
init_range_high = 5
parent_selection_type = "sss"
crossover_type = "single_point"
mutation_type = "random"
ga_instance = pygad.GA(num_generations=num_generations,
num_parents_mating=num_parents_mating,
fitness_func=fitness_func,
sol_per_pop=sol_per_pop,
num_genes=num_genes,
init_range_low=init_range_low,
init_range_high=init_range_high,
parent_selection_type=parent_selection_type,
keep_parents=keep_parents,
crossover_type=crossover_type,
mutation_type=mutation_type,
mutation_percent_genes=mutation_percent_genes,
on_generation=callback_generation)
ga_instance.run()
solution, solution_fitness, solution_idx = ga_instance.best_solution(pop_fitness=ga_instance.last_generation_fitness)
print("Parameters of the best solution : {solution}".format(solution=solution))
print("Fitness value of the best solution = {solution_fitness}".format(solution_fitness=solution_fitness))
prediction = numpy.sum(numpy.array(function_inputs)*solution)
print("Predicted output based on the best solution : {prediction}".format(prediction=prediction))
Thanks @ahmedfgad , this indeed fixes the issue.
Thanks @ahmedfgad
I put a print statement in my fitness function, and I noticed that it gets called multiple times for a given solution in a given generation. Is this expected?