ahrm / UnstableFusion

A Stable Diffusion desktop frontend with inpainting, img2img and more!
GNU General Public License v3.0
1.26k stars 84 forks source link

Given raise value error along with others #50

Open MUGENHackap opened 1 year ago

MUGENHackap commented 1 year ago

I am doing this with NO EXPERIENCE so pls just help get this working. I really wanna do ai art but this is getting annoying.

Traceback (most recent call last): File "C:\Users\Fuck you microsoft\Documents\UnstableFusion-main\UnstableFusion.py", line 897, in handle_generate_button if type(self.get_handler()) == ServerStableDiffusionHandler: File "C:\Users\Fuck you microsoft\Documents\UnstableFusion-main\UnstableFusion.py", line 460, in get_handler return self.stable_diffusion_manager.get_handler() File "C:\Users\Fuck you microsoft\Documents\UnstableFusion-main\UnstableFusion.py", line 329, in get_handler return self.get_local_handler(self.get_huggingface_token()) File "C:\Users\Fuck you microsoft\Documents\UnstableFusion-main\UnstableFusion.py", line 312, in get_local_handler self.cached_local_handler = StableDiffusionHandler(token) File "C:\Users\Fuck you microsoft\Documents\UnstableFusion-main\diffusionserver.py", line 36, in init self.text2img = StableDiffusionPipeline.from_pretrained( File "C:\Users\Fuck you microsoft\anaconda3\lib\site-packages\diffusers\pipeline_utils.py", line 516, in from_pretrained raise ValueError( ValueError: The component <class 'transformers.models.clip.feature_extraction_clip.CLIPFeatureExtractor'> of <class 'diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline'> cannot be loaded as it does not seem to have any of the loading methods defined in {'ModelMixin': ['save_pretrained', 'from_pretrained'], 'SchedulerMixin': ['save_config', 'from_config'], 'DiffusionPipeline': ['save_pretrained', 'from_pretrained'], 'OnnxRuntimeModel': ['save_pretrained', 'from_pretrained'], 'PreTrainedTokenizer': ['save_pretrained', 'from_pretrained'], 'PreTrainedTokenizerFast': ['save_pretrained', 'from_pretrained'], 'PreTrainedModel': ['save_pretrained', 'from_pretrained'], 'FeatureExtractionMixin': ['save_pretrained', 'from_pretrained']}.