Open sphuber opened 3 years ago
Not sure if this is actually a problem with the plugin or with the installation/compilation of Abinit on QM.
Can you share the input file?
##############################################
#### SECTION: basic
##############################################
ecut 10.0
nstep 300
nsppol 1
occopt 3
tolvrs 1e-10
nshiftk 1
ngkpt 20 20 20
kptopt 1
shiftk 0.5 0.5 0.5
##############################################
#### SECTION: files
##############################################
pseudos "Si.psp8"
pp_dirpath "./pseudo/"
##############################################
#### SECTION: gstate
##############################################
fband 2.0
nspden 1
tsmear 0.005
chkprim 0
nspinor 1
chksymbreak 0
##############################################
#### SECTION: paral
##############################################
autoparal 1
##############################################
#### SECTION: paw
##############################################
pawecutdg 20.0
##############################################
#### SECTION: rlx
##############################################
ecutsm 0.5
ionmov 22
tolmxf 5e-05
dilatmx 1.0
optcell 0
restartxf 0
##############################################
#### STRUCTURE
##############################################
natom 2
ntypat 1
typat 1 1
znucl 14
xred
0.0000000000 0.0000000000 0.0000000000
0.2500000000 0.2500000000 0.2500000000
acell 1.0 1.0 1.0
rprim
7.3077409993 0.0000000000 0.0000000000
3.6538704996 6.3286893497 0.0000000000
3.6538704996 2.1095631166 5.9667455402
Hello Sebastiaan,
Does seems like an Abinit compilation issue with mpi indeed. As discussed, can you try the docker with QM 20.11.2a and let us know if that works ?
Thanks, Sam
I tried with 20.11.2a but that made things worse. That actually still had aiida-abinit==0.1.0a1
installed. But even after updating it to 0.2.0a1
and installing latest aiida-common-workflows
I am getting the same problem. Any ideas?
I've run a few tests:
aiida-pseudo install pseudo-dojo -v 1.0 -f jthxml
.aiida-common-workflows launch relax -S Si abinit
I saw the same failure as above (SIGINT: Illegal instruction.
)
I then copied the repository directory to my workstation and ran the input file using my installation of Abinit v9.2.1, which worked as expected.
aiida-common-workflows
and the PseudoDojo pseudos as in the Docker instructionsaiida-common-workflows launch relax -S Si abinit
This completed successfully as on my workstation.
It seems like this is an issue with the compilation in Docker.
It may be good to check if this also happens with the VirtualBox image of Quantum Mobile.
I recall there was initially some issues with the source abinit tests failing (https://github.com/marvel-nccr/ansible-role-abinit/issues/9) but now they do parse, including one for parallel execution: (https://github.com/marvel-nccr/ansible-role-abinit/blob/88d8c1380fdac30941a32b567bf6c5c8f2810bee/defaults/main.yml#L49
Also I assume with aiida the computations are being run as mpirun -n {mpiprocs} abinit ...
but yeh I will look into this more when finalising the QM for common workflows within the next week
@chrisjsewell I did run in both the Docker container and in the VirtualBox image (see above).
The calculations are being run as 'mpirun' '-np' '2' '/usr/local/bin/abinit' 'aiida.in' > 'aiida.out'
Ok cheers, and do we know if any of the other simulation codes have issues running with MPI inside the Docker container, or this is only an issue with abinit?
The PwCalculation
s ran just fine and they should default to running with MPI. I don't have the container anymore so I can't check, but I will see if I can find the time to test again and confirm it ran fine with MPI. Thanks @chrisjsewell
quantum_espresso
working with aiida-common-workflows launch relax -S Si -r none quantum_espresso
(gives an error without the -r none
: ValueError: 'positions' is not a valid RelaxType
; is this known @sphuber ?)cp2k
error with aiida-common-workflows launch relax -S Si -r none cp2k
"Don't activate OT and Diagonalization together"
siesta
error with aiida-common-workflows launch relax -S Si -r none siesta
because they depend on an old name for the aiida-pseudo
-installed pseudopotentialsbigdft
seems to be ok Siesta doesn't use aiida-pseudo
. They require the pseudos to be installed through verdi data psf uploadfamily
. I ran Siesta successfully after having installed the pseudos.
Edit: just reran QE and can confirm that it does run with MPI and without issues. This is using the Docker container.
@zooks97 yes this has already been fixed in the develop branch of aiida-quantumespresso
and is simply awaiting a release, which should be soon
ta, yeh if we can "gather" any quantum-mobile specific issues here, then I can hopefully set aside a day and hit them all in one go 😄
@sphuber this is the traceback from Siesta; looks like they want psml
format
aiida) max@f5b2fb4d00a2:~$ aiida-common-workflows launch relax -S Si siesta
Traceback (most recent call last):
File "/home/max/codes/aiida-common-workflows/aiida_common_workflows/workflows/relax/siesta/generator.py", line 148, in get_builder
orm.Group.objects.get(label=pseudo_family)
File "/home/max/codes/aiida-core/aiida/orm/entities.py", line 136, in get
return res.one()[0]
File "/home/max/codes/aiida-core/aiida/orm/querybuilder.py", line 2183, in one
raise NotExistent('No result was found')
aiida.common.exceptions.NotExistent: No result was found
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "/home/max/.virtualenvs/aiida/bin/aiida-common-workflows", line 11, in <module>
load_entry_point('aiida-common-workflows', 'console_scripts', 'aiida-common-workflows')()
File "/home/max/.virtualenvs/aiida/lib/python3.7/site-packages/click/core.py", line 829, in __call__
return self.main(*args, **kwargs)
File "/home/max/.virtualenvs/aiida/lib/python3.7/site-packages/click/core.py", line 782, in main
rv = self.invoke(ctx)
File "/home/max/.virtualenvs/aiida/lib/python3.7/site-packages/click/core.py", line 1259, in invoke
return _process_result(sub_ctx.command.invoke(sub_ctx))
File "/home/max/.virtualenvs/aiida/lib/python3.7/site-packages/click/core.py", line 1259, in invoke
return _process_result(sub_ctx.command.invoke(sub_ctx))
File "/home/max/.virtualenvs/aiida/lib/python3.7/site-packages/click/core.py", line 1066, in invoke
return ctx.invoke(self.callback, **ctx.params)
File "/home/max/.virtualenvs/aiida/lib/python3.7/site-packages/click/core.py", line 610, in invoke
return callback(*args, **kwargs)
File "/home/max/codes/aiida-common-workflows/aiida_common_workflows/cli/launch.py", line 118, in cmd_relax
reference_workchain=reference_workchain,
File "/home/max/codes/aiida-common-workflows/aiida_common_workflows/workflows/relax/siesta/generator.py", line 152, in get_builder
'but no family with this name is loaded in the database'.format(protocol, pseudo_family)
ValueError: protocol `fast` requires `pseudo_family` with name nc-sr-04_pbe_standard_psml but no family with this name is loaded in the database
@zooks97 thanks for testing. All these problems are known and are either fixed or have their own open issue on this repo. To run Siesta, you need to run the instructions that are in the SI of the paper. In the case of Siesta specifically:
verdi data psml uploadfamily /usr/local/share/siesta/psml-files-qm/nc-sr-04_pbe_standard/ nc-sr-04_pbe_standard_psml "pseudos from PseudoDojo"
@chrisjsewell cheers. To summarize, the only problem with the QM container seems that Abinit fails to run using MPI. All the other problems mentioned here are either already fixed or problems with the plugins that are dealt with in other open issues.
@sphuber Thanks, sorry for the confusion and duplication.
mpirun noticed that process rank 0 with PID 5627 on node a54d4363604c exited on signal 4 (Illegal instruction).
The illegal instruction may be due to the use of the optimization options: -mtune=native -march=native
Have you tried to recompile Abinit with less aggressive optimization level e.g.:
CFLAGS="-g -O2"
CXXFLAGS="-g -O2"
FCFLAGS="-g -O2 -ffree-line-length-none"`
To narrow down the issue, I created a new Docker image that only has abinit installed of the simulation codes: docker pull marvelnccr/quantum-mobile:21.03.21-abinit
(https://hub.docker.com/layers/marvelnccr/quantum-mobile/21.03.21-abinit/images/sha256-d2af850fb8dac916a88381dc69a27fb25fc7b33e5f167893ae92f74b88f7b30f?context=explore)
Then I added the input file from https://github.com/aiidateam/aiida-common-workflows/issues/159#issuecomment-795422008 (in /home/max
), and pseudo/Si.psp8
(https://github.com/abinit/pseudo_dojo/blob/master/pseudo_dojo/pseudos/ONCVPSP-PBE-DEV/Si/Si.psp8) and run directly mpirun -np 2 /usr/local/bin/abinit aiida.in > aiida.out
.
This appears to run successfully.
Can you guys confirm whether you can run correctly on this?
The only (non-fatal) issue I noted from the output below is that netcdf is not compile for mpi
ABINIT 9.2.1
-instrng: 59 lines of input have been read from file aiida.in
.Version 9.2.1 of ABINIT
.(MPI version, prepared for a x86_64_linux_gnu7.5 computer)
.Copyright (C) 1998-2020 ABINIT group .
ABINIT comes with ABSOLUTELY NO WARRANTY.
It is free software, and you are welcome to redistribute it
under certain conditions (GNU General Public License,
see ~abinit/COPYING or http://www.gnu.org/copyleft/gpl.txt).
ABINIT is a project of the Universite Catholique de Louvain,
Corning Inc. and other collaborators, see ~abinit/doc/developers/contributors.txt .
Please read https://docs.abinit.org/theory/acknowledgments for suggested
acknowledgments of the ABINIT effort.
For more information, see https://www.abinit.org .
.Starting date : Mon 22 Mar 2021.
- ( at 08h59 )
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
=== Build Information ===
Version : 9.2.1
Build target : x86_64_linux_gnu7.5
Build date : 20210321
=== Compiler Suite ===
C compiler : gnu7.5
C++ compiler : gnu7.5
Fortran compiler : gnu7.5
CFLAGS : -g -O2 -mtune=native -march=native
CXXFLAGS : -g -O2 -mtune=native -march=native
FCFLAGS : -g -ffree-line-length-none
FC_LDFLAGS :
=== Optimizations ===
Debug level : @abi_debug_flavor@
Optimization level : @abi_optim_flavor@
Architecture : unknown_unknown
=== Multicore ===
Parallel build : yes
Parallel I/O : yes
openMP support :
GPU support :
=== Connectors / Fallbacks ===
LINALG flavor : netlib
FFT flavor : goedecker
HDF5 : yes
NetCDF : yes
NetCDF Fortran : yes
LibXC : yes
Wannier90 : no
=== Experimental features ===
Exports :
GW double-precision :
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Default optimizations:
-O2 -mtune=native -march=native
Optimizations for 43_ptgroups:
-O0
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
CPP options activated during the build:
CC_GNU CXX_GNU FC_GNU
HAVE_FC_ALLOCATABLE_DT... HAVE_FC_ASYNC HAVE_FC_BACKTRACE
HAVE_FC_COMMAND_ARGUMENT HAVE_FC_COMMAND_LINE HAVE_FC_CONTIGUOUS
HAVE_FC_CPUTIME HAVE_FC_EXIT HAVE_FC_FLUSH
HAVE_FC_GAMMA HAVE_FC_GETENV HAVE_FC_IEEE_ARITHMETIC
HAVE_FC_IEEE_EXCEPTIONS HAVE_FC_INT_QUAD HAVE_FC_IOMSG
HAVE_FC_ISO_C_BINDING HAVE_FC_ISO_FORTRAN_2008 HAVE_FC_LONG_LINES
HAVE_FC_MOVE_ALLOC HAVE_FC_ON_THE_FLY_SHAPE HAVE_FC_PRIVATE
HAVE_FC_PROTECTED HAVE_FC_SHIFTLR HAVE_FC_STREAM_IO
HAVE_FC_SYSTEM HAVE_FORTRAN2003 HAVE_HDF5
HAVE_HDF5_MPI HAVE_LIBPAW_ABINIT HAVE_LIBTETRA_ABINIT
HAVE_LIBXC HAVE_MPI HAVE_MPI2
HAVE_MPI_IALLGATHER HAVE_MPI_IALLREDUCE HAVE_MPI_IALLTOALL
HAVE_MPI_IALLTOALLV HAVE_MPI_IBCAST HAVE_MPI_IGATHERV
HAVE_MPI_INTEGER16 HAVE_MPI_IO HAVE_MPI_TYPE_CREATE_S...
HAVE_NETCDF HAVE_NETCDF_FORTRAN HAVE_NETCDF_FORTRAN_MPI
HAVE_NETCDF_MPI HAVE_NUMPY HAVE_OS_LINUX
HAVE_TIMER_ABINIT
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
- input file -> aiida.in
- output file -> aiida.abo
- root for input files -> aiidai
- root for output files -> aiidao
--- !WARNING
src_file: m_nctk.F90
src_line: 564
message: |
Netcdf lib does not support MPI-IO and: NetCDF: Parallel operation on file opened for non-parallel access
...
Asked to delete not existent file: __TMP_FILE__
--- !WARNING
src_file: m_nctk.F90
src_line: 584
message: |
The netcdf library does not support parallel IO, see message above
Abinit won't be able to produce files in parallel e.g. when paral_kgb==1 is used.
Action: install a netcdf4+HDF5 library with MPI-IO support.
...
-instrng: 59 lines of input have been read from file aiida.in
For atom type 1, psp file is ./pseudo/Si.psp8
read the values zionpsp= 4.0 , pspcod= 8 , lmax= 2
inpspheads: deduce mpsang = 3, n1xccc = 2501.
=======================================================
invars1m : enter jdtset= 0
symlatt: the Bravais lattice is cF (face-centered cubic)
xred is defined in input file
ingeo: takes atomic coordinates from input array xred
--- !WARNING
src_file: m_ingeo.F90
src_line: 867
message: |
The tolerance on symmetries = 1.000000E-05 is bigger than 1.0e-8.
In order to avoid spurious effects, the atomic coordinates have been
symmetrized before storing them in the dataset internal variable.
So, do not be surprised by the fact that your input variables (xcart, xred, ...)
do not correspond to the ones echoed by ABINIT, the latter being used to do the calculations.
In order to avoid this symmetrization (e.g. for specific debugging/development), decrease tolsym to 1.0e-8 or lower.
...
symlatt: the Bravais lattice is cF (face-centered cubic)
symlatt: the Bravais lattice is cF (face-centered cubic)
symspgr: spgroup= 227 Fd -3 m (=Oh^7)
symspgr: optical characteristics = isotropic
invars2: read the value of fband= 2.00000000E+00 from input file.
--- !COMMENT
src_file: m_invars2.F90
src_line: 2397
message: |
Found ionmov /= 0 without ntime in the input. ntime has been set automatically to 1000
...
getmpw sequential formula gave: 417
====================================================================================================
Searching for all possible proc distributions for this input with #CPUs<=2:
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
| npkpt| npfft| npband| bandpp| #MPI(proc)| WEIGHT|
| 1<< 2| 1<< 2| 1<< 2| 1<< 8| 1<< 2| <= 2|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
| 2| 1| 1| 1| 2| 1.968|
| 1| 1| 2| 4| 2| 1.735|
| 1| 1| 2| 2| 2| 1.671|
| 1| 1| 2| 1| 2| 1.543|
| 1| 2| 1| 8| 2| 1.477|
| 1| 2| 1| 4| 2| 1.441|
| 1| 2| 1| 2| 2| 1.370|
| 1| 2| 1| 1| 2| 1.231|
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Only the best possible choices for nproc are printed...
>>> Possible (best) choices for the number of bands (nband) are:
with: npkpt=2 npfft=1
nband= 8 using 2 CPUs = 2 MPI x 1 threads (npband= 1)
>>> The present nband value ( 8) seems to be the best choice!
====================================================================================================
For input ecut= 1.000000E+01 best grid ngfft= 24 24 24
max ecut= 1.330656E+01
==== FFT mesh ====
FFT mesh divisions ........................ 24 24 24
Augmented FFT divisions ................... 25 25 24
FFT algorithm ............................. 112
FFT cache size ............................ 16
getmpw: optimal value of mpw= 431
Symmetries : space group Fd -3 m (#227); Bravais cF (face-center cubic)
getdim_nloc : deduce lmnmax = 18, lnmax = 6,
lmnmaxso= 18, lnmaxso= 6.
memory: analysis of memory needs
================================================================================
Values of the parameters that define the memory need of the present run
intxc = 0 ionmov = 22 iscf = 7 lmnmax = 6
lnmax = 6 mgfft = 24 mpssoang = 3 mqgrid = 3001
natom = 2 nloc_mem = 1 nspden = 1 nspinor = 1
nsppol = 1 nsym = 48 n1xccc = 2501 ntypat = 1
occopt = 3 xclevel = 2
- mband = 8 mffmem = 1 mkmem = 385
mpw = 431 nfft = 13824 nkpt = 770
================================================================================
P This job should need less than 28.494 Mbytes of memory.
Rough estimation (10% accuracy) of disk space for files :
_ WF disk file : 40.513 Mbytes ; DEN or POT disk file : 0.107 Mbytes.
================================================================================
Biggest array : cg(disk), with 20.2577 MBytes.
memana : allocated an array of 20.258 Mbytes, for testing purposes.
memana: allocated 28.494Mbytes, for testing purposes.
The job will continue.
--------------------------------------------------------------------------------
------------- Echo of variables that govern the present computation ------------
--------------------------------------------------------------------------------
-
- outvars: echo of selected default values
- iomode0 = 0 , fftalg0 =112 , wfoptalg0 = 0
-
- outvars: echo of global parameters not present in the input file
- max_nthreads = 0
-
-outvars: echo values of preprocessed input variables --------
These variables are accessible in NetCDF format (aiidao_OUT.nc)
acell 1.0000000000E+00 1.0000000000E+00 1.0000000000E+00 Bohr
amu 2.80855000E+01
autoparal 1
chksymbreak 0
ecut 1.00000000E+01 Hartree
ecutsm 5.00000000E-01 Hartree
- fftalg 112
ionmov 22
ixc 11
kpt 2.50000000E-02 2.50000000E-02 2.50000000E-02
7.50000000E-02 2.50000000E-02 2.50000000E-02
1.25000000E-01 2.50000000E-02 2.50000000E-02
1.75000000E-01 2.50000000E-02 2.50000000E-02
2.25000000E-01 2.50000000E-02 2.50000000E-02
2.75000000E-01 2.50000000E-02 2.50000000E-02
3.25000000E-01 2.50000000E-02 2.50000000E-02
4.75000000E-01 2.50000000E-02 2.50000000E-02
-4.75000000E-01 2.50000000E-02 2.50000000E-02
-4.25000000E-01 2.50000000E-02 2.50000000E-02
-3.75000000E-01 2.50000000E-02 2.50000000E-02
-3.25000000E-01 2.50000000E-02 2.50000000E-02
-2.75000000E-01 2.50000000E-02 2.50000000E-02
-2.25000000E-01 2.50000000E-02 2.50000000E-02
-1.75000000E-01 2.50000000E-02 2.50000000E-02
-1.25000000E-01 2.50000000E-02 2.50000000E-02
-7.50000000E-02 2.50000000E-02 2.50000000E-02
-2.50000000E-02 2.50000000E-02 2.50000000E-02
7.50000000E-02 7.50000000E-02 2.50000000E-02
1.25000000E-01 7.50000000E-02 2.50000000E-02
1.75000000E-01 7.50000000E-02 2.50000000E-02
2.25000000E-01 7.50000000E-02 2.50000000E-02
2.75000000E-01 7.50000000E-02 2.50000000E-02
3.25000000E-01 7.50000000E-02 2.50000000E-02
3.75000000E-01 7.50000000E-02 2.50000000E-02
4.25000000E-01 7.50000000E-02 2.50000000E-02
4.75000000E-01 7.50000000E-02 2.50000000E-02
-4.25000000E-01 7.50000000E-02 2.50000000E-02
-3.75000000E-01 7.50000000E-02 2.50000000E-02
-3.25000000E-01 7.50000000E-02 2.50000000E-02
-2.75000000E-01 7.50000000E-02 2.50000000E-02
-2.25000000E-01 7.50000000E-02 2.50000000E-02
-1.75000000E-01 7.50000000E-02 2.50000000E-02
-1.25000000E-01 7.50000000E-02 2.50000000E-02
-7.50000000E-02 7.50000000E-02 2.50000000E-02
-2.50000000E-02 7.50000000E-02 2.50000000E-02
1.25000000E-01 1.25000000E-01 2.50000000E-02
1.75000000E-01 1.25000000E-01 2.50000000E-02
2.25000000E-01 1.25000000E-01 2.50000000E-02
2.75000000E-01 1.25000000E-01 2.50000000E-02
3.25000000E-01 1.25000000E-01 2.50000000E-02
3.75000000E-01 1.25000000E-01 2.50000000E-02
4.25000000E-01 1.25000000E-01 2.50000000E-02
4.75000000E-01 1.25000000E-01 2.50000000E-02
-4.75000000E-01 1.25000000E-01 2.50000000E-02
-4.25000000E-01 1.25000000E-01 2.50000000E-02
-3.75000000E-01 1.25000000E-01 2.50000000E-02
-3.25000000E-01 1.25000000E-01 2.50000000E-02
-2.75000000E-01 1.25000000E-01 2.50000000E-02
-2.25000000E-01 1.25000000E-01 2.50000000E-02
outvar_i_n : Printing only first 50 k-points.
kptrlatt 20 0 0 0 20 0 0 0 20
kptrlen 1.46154820E+02
P mkmem 385
natom 2
nband 8
ngfft 24 24 24
nkpt 770
- npkpt 2
nstep 300
nsym 48
ntime 1000
ntypat 1
occ 2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000
2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000
2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000
2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000
2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000
2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000
2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000
2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000
2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000
2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000
2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000
2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000
2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000
2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000
2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000
2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000
2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000
2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000
2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000
2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000
2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000
2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000
2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000
2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000
2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000
2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000
2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000
2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000
2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000
2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000
2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000
2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000
2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000
2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000
2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000
2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000
2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000
2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000
2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000
2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000
2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000
2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000
2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000
2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000
2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000
2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000
2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000
2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000
2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000
2.000000 2.000000 2.000000 2.000000 0.000000 0.000000
0.000000 0.000000
prtocc : prtvol=0, do not print more k-points.
occopt 3
pawecutdg 2.00000000E+01 Hartree
rprim 7.3077409993E+00 0.0000000000E+00 0.0000000000E+00
3.6538704996E+00 6.3286893497E+00 0.0000000000E+00
3.6538704996E+00 2.1095631166E+00 5.9667455402E+00
shiftk 5.00000000E-01 5.00000000E-01 5.00000000E-01
spgroup 227
symrel 1 0 0 0 1 0 0 0 1 -1 0 0 0 -1 0 0 0 -1
0 -1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1 0
-1 0 0 -1 0 1 -1 1 0 1 0 0 1 0 -1 1 -1 0
0 1 -1 1 0 -1 0 0 -1 0 -1 1 -1 0 1 0 0 1
-1 0 0 -1 1 0 -1 0 1 1 0 0 1 -1 0 1 0 -1
0 -1 1 1 -1 0 0 -1 0 0 1 -1 -1 1 0 0 1 0
1 0 0 0 0 1 0 1 0 -1 0 0 0 0 -1 0 -1 0
0 1 -1 0 0 -1 1 0 -1 0 -1 1 0 0 1 -1 0 1
-1 0 1 -1 1 0 -1 0 0 1 0 -1 1 -1 0 1 0 0
0 -1 0 1 -1 0 0 -1 1 0 1 0 -1 1 0 0 1 -1
1 0 -1 0 0 -1 0 1 -1 -1 0 1 0 0 1 0 -1 1
0 1 0 0 0 1 1 0 0 0 -1 0 0 0 -1 -1 0 0
1 0 -1 0 1 -1 0 0 -1 -1 0 1 0 -1 1 0 0 1
0 -1 0 0 -1 1 1 -1 0 0 1 0 0 1 -1 -1 1 0
-1 0 1 -1 0 0 -1 1 0 1 0 -1 1 0 0 1 -1 0
0 1 0 1 0 0 0 0 1 0 -1 0 -1 0 0 0 0 -1
0 0 -1 0 1 -1 1 0 -1 0 0 1 0 -1 1 -1 0 1
1 -1 0 0 -1 1 0 -1 0 -1 1 0 0 1 -1 0 1 0
0 0 1 1 0 0 0 1 0 0 0 -1 -1 0 0 0 -1 0
-1 1 0 -1 0 0 -1 0 1 1 -1 0 1 0 0 1 0 -1
0 0 1 0 1 0 1 0 0 0 0 -1 0 -1 0 -1 0 0
1 -1 0 0 -1 0 0 -1 1 -1 1 0 0 1 0 0 1 -1
0 0 -1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1
-1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1 0 0
tnons 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
tolvrs 1.00000000E-10
tsmear 5.00000000E-03 Hartree
typat 1 1
wtk 0.00025 0.00075 0.00075 0.00075 0.00075 0.00075
0.00075 0.00075 0.00075 0.00075 0.00075 0.00075
0.00075 0.00075 0.00075 0.00075 0.00075 0.00075
0.00075 0.00150 0.00150 0.00150 0.00150 0.00150
0.00150 0.00150 0.00150 0.00150 0.00150 0.00150
0.00150 0.00150 0.00150 0.00150 0.00150 0.00150
0.00075 0.00150 0.00150 0.00150 0.00150 0.00150
0.00150 0.00150 0.00150 0.00150 0.00150 0.00150
0.00150 0.00150
outvars : Printing only first 50 k-points.
xangst 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
1.9335449915E+00 1.1163327214E+00 7.8936643733E-01
xcart 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
3.6538704996E+00 2.1095631166E+00 1.4916863850E+00
xred 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
2.5000000000E-01 2.5000000000E-01 2.5000000000E-01
znucl 14.00000
================================================================================
chkinp: Checking input parameters for consistency.
--- !COMMENT
src_file: m_chkinp.F90
src_line: 3879
message: |
dipdip can be set to 0 in case of metals whereas dipdip 1 should be used in polar materials.
...
DATA TYPE INFORMATION:
REAL: Data type name: REAL(DP)
Kind value: 8
Precision: 15
Smallest nonnegligible quantity relative to 1: 0.22204460E-015
Smallest positive number: 0.22250739E-307
Largest representable number: 0.17976931E+309
INTEGER: Data type name: INTEGER(default)
Kind value: 4
Bit size: 32
Largest representable number: 2147483647
LOGICAL: Data type name: LOGICAL
Kind value: 4
CHARACTER: Data type name: CHARACTER Kind value: 1
==== OpenMP parallelism is OFF ====
==== Using MPI-2 specifications ====
MPI-IO support is ON
xmpi_tag_ub ................ 2147483647
xmpi_bsize_ch .............. 1
xmpi_bsize_int ............. 4
xmpi_bsize_sp .............. 4
xmpi_bsize_dp .............. 8
xmpi_bsize_spc ............. 8
xmpi_bsize_dpc ............. 16
xmpio_bsize_frm ............ 4
xmpi_address_kind .......... 8
xmpi_offset_kind ........... 8
MPI_WTICK .................. 1.0000000000000001E-009
================================================================================
== DATASET 1 ==================================================================
- mpi_nproc: 2, omp_nthreads: -1 (-1 if OMP is not activated)
--- !COMMENT
src_file: m_xgScalapack.F90
src_line: 236
message: |
xgScalapack in auto mode
...
getdim_nloc : deduce lmnmax = 18, lnmax = 6,
lmnmaxso= 18, lnmaxso= 6.
Exchange-correlation functional for the present dataset will be:
GGA: Perdew-Burke-Ernzerhof functional - ixc=11
Citation for XC functional:
J.P.Perdew, K.Burke, M.Ernzerhof, PRL 77, 3865 (1996)
Unit cell volume ucvol= 2.7595257E+02 bohr^3
Angles (23,13,12)= 6.00000000E+01 6.00000000E+01 6.00000000E+01 degrees
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 24 24 24
ecut(hartree)= 10.000 => boxcut(ratio)= 2.30708
getcut : COMMENT -
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
is sufficient for exact treatment of convolution.
Such a large boxcut is a waste : you could raise ecut
e.g. ecut= 13.306565 Hartrees makes boxcut=2
- pspini: atom type 1 psp file is ./pseudo/Si.psp8
- pspatm: opening atomic psp file ./pseudo/Si.psp8
- Si ONCVPSP r_core= 1.60 1.72 1.92
- 14.00000 4.00000 150713 znucl, zion, pspdat
8 11 2 4 600 0.00000 pspcod,pspxc,lmax,lloc,mmax,r2well
5.99000000000000 4.00000000000000 0.00000000000000 rchrg,fchrg,qchrg
nproj 2 2 2
extension_switch 1
valence charge integrates to: 3.9532830459927286
pspatm : epsatm= 9.35284323
--- l ekb(1:nproj) -->
0 5.077596 0.840525
1 2.714235 0.601251
2 -10.098774 -0.937313
pspatm: atomic psp has been read and splines computed
1.49645492E+02 ecore*ucvol(ha*bohr**3)
==== Info on pseudopotentials ====
Norm-conserving pseudopotentials
Number of pseudopotentials .. 1
Number of types of atoms .. 1
Scalar calculation (no spin-orbit term)
Nonlocal part applied using Legendre polynomials
Max number of non-local projectors over l and type 2
Highest angular momentum +1 ....... 3
Max number of (l,n) components .. 6
Max number of (l,m,n) components .. 6
Pseudo-Core Charge Info:
Number of radial points for pseudo-core charge .. 2501
XC core-correction treatment (optnlxccc) ........ 1
Radius for pseudo-core charge for each type .....
- Atom type 1 has pseudo-core radius .. 5.9900
Info on the Q-grid used for form factors in spline form:
Number of q-points for radial functions ffspl .. 3001
Number of q-points for vlspl ................... 3001
vloc is computed in Reciprocal Space
model core charge treated in real-space
XC functional for type 1 is 11
Pseudo valence available: yes
wfconv: 8 bands initialized randomly with npw= 411, for ikpt= 1
wfconv: 8 bands initialized randomly with npw= 411, for ikpt= 2
wfconv: 8 bands initialized randomly with npw= 415, for ikpt= 3
wfconv: 8 bands initialized randomly with npw= 411, for ikpt= 4
wfconv: 8 bands initialized randomly with npw= 409, for ikpt= 5
wfconv: 8 bands initialized randomly with npw= 412, for ikpt= 6
wfconv: 8 bands initialized randomly with npw= 416, for ikpt= 7
wfconv: 8 bands initialized randomly with npw= 418, for ikpt= 8
wfconv: 8 bands initialized randomly with npw= 410, for ikpt= 9
wfconv: 8 bands initialized randomly with npw= 418, for ikpt= 10
wfconv: 8 bands initialized randomly with npw= 419, for ikpt= 11
wfconv: 8 bands initialized randomly with npw= 415, for ikpt= 12
wfconv: 8 bands initialized randomly with npw= 417, for ikpt= 13
wfconv: 8 bands initialized randomly with npw= 410, for ikpt= 14
wfconv: 8 bands initialized randomly with npw= 408, for ikpt= 15
wfconv: 8 bands initialized randomly with npw= 413, for ikpt= 16
wfconv: 8 bands initialized randomly with npw= 415, for ikpt= 17
wfconv: 8 bands initialized randomly with npw= 411, for ikpt= 18
wfconv: 8 bands initialized randomly with npw= 411, for ikpt= 19
wfconv: 8 bands initialized randomly with npw= 416, for ikpt= 20
wfconv: 8 bands initialized randomly with npw= 411, for ikpt= 21
wfconv: 8 bands initialized randomly with npw= 410, for ikpt= 22
wfconv: 8 bands initialized randomly with npw= 413, for ikpt= 23
wfconv: 8 bands initialized randomly with npw= 413, for ikpt= 24
wfconv: 8 bands initialized randomly with npw= 416, for ikpt= 25
wfconv: 8 bands initialized randomly with npw= 417, for ikpt= 26
wfconv: 8 bands initialized randomly with npw= 418, for ikpt= 27
wfconv: 8 bands initialized randomly with npw= 416, for ikpt= 28
wfconv: 8 bands initialized randomly with npw= 417, for ikpt= 29
wfconv: 8 bands initialized randomly with npw= 414, for ikpt= 30
wfconv: 8 bands initialized randomly with npw= 412, for ikpt= 31
wfconv: 8 bands initialized randomly with npw= 412, for ikpt= 32
wfconv: 8 bands initialized randomly with npw= 413, for ikpt= 33
wfconv: 8 bands initialized randomly with npw= 410, for ikpt= 34
wfconv: 8 bands initialized randomly with npw= 418, for ikpt= 35
wfconv: 8 bands initialized randomly with npw= 414, for ikpt= 36
wfconv: 8 bands initialized randomly with npw= 414, for ikpt= 37
wfconv: 8 bands initialized randomly with npw= 413, for ikpt= 38
wfconv: 8 bands initialized randomly with npw= 415, for ikpt= 39
wfconv: 8 bands initialized randomly with npw= 415, for ikpt= 40
wfconv: 8 bands initialized randomly with npw= 417, for ikpt= 41
wfconv: 8 bands initialized randomly with npw= 421, for ikpt= 42
wfconv: 8 bands initialized randomly with npw= 418, for ikpt= 43
wfconv: 8 bands initialized randomly with npw= 417, for ikpt= 44
wfconv: 8 bands initialized randomly with npw= 415, for ikpt= 45
wfconv: 8 bands initialized randomly with npw= 413, for ikpt= 46
wfconv: 8 bands initialized randomly with npw= 417, for ikpt= 47
wfconv: 8 bands initialized randomly with npw= 415, for ikpt= 48
wfconv: 8 bands initialized randomly with npw= 416, for ikpt= 49
wfconv: 8 bands initialized randomly with npw= 414, for ikpt= 50
_setup2: Arith. and geom. avg. npw (full set) are 416.814 416.801
initro: for itypat= 1, take pseudo charge density from pp file
================================================================================
=== [ionmov=22] Limited-memory Broyden-Fletcher-Goldfard-Shanno method
================================================================================
--- Iteration: ( 1/1000) Internal Cycle: (1/1)
--------------------------------------------------------------------------------
Cartesian coordinates (xcart) [bohr]
0.00000000000000E+00 0.00000000000000E+00 0.00000000000000E+00
3.65387049962500E+00 2.10956311657500E+00 1.49168638505000E+00
Reduced coordinates (xred)
0.00000000000000E+00 0.00000000000000E+00 0.00000000000000E+00
2.50000000000000E-01 2.50000000000000E-01 2.50000000000000E-01
---SELF-CONSISTENT-FIELD CONVERGENCE--------------------------------------------
getcut: wavevector= 0.0000 0.0000 0.0000 ngfft= 24 24 24
ecut(hartree)= 10.000 => boxcut(ratio)= 2.30708
getcut : COMMENT -
Note that boxcut > 2.2 ; recall that boxcut=Gcut(box)/Gcut(sphere) = 2
is sufficient for exact treatment of convolution.
Such a large boxcut is a waste : you could raise ecut
e.g. ecut= 13.306565 Hartrees makes boxcut=2
1/G**2 cut-off applied in the following step : cutoff-mode = CRYSTAL
1/G**2 cut-off applied in the following step : cutoff-mode = CRYSTAL
1/G**2 cut-off applied in the following step : cutoff-mode = CRYSTAL
ITER STEP NUMBER 1
vtorho: nnsclo_now = 2, note that nnsclo, dbl_nnsclo, istep= 0 0 1
newocc: new Fermi energy is 0.150768 (Ha), 4.102611 (eV)
with nelect: 8.000000, after number of bisections: 41
mkrho: echo density (plane-wave part only)
Total charge density [el/Bohr^3]
Maximum= 8.6773E-02 at reduced coord. 0.0833 0.1250 0.7083
Minimum= 1.4298E-03 at reduced coord. 0.0000 0.0000 0.0000
Integrated= 8.0000E+00
Total charge density [el/Bohr^3]
Maximum= 8.6773E-02 at reduced coord. 0.0833 0.1250 0.7083
Minimum= 1.4298E-03 at reduced coord. 0.0000 0.0000 0.0000
Integrated= 8.0000E+00
1/G**2 cut-off applied in the following step : cutoff-mode = CRYSTAL
ETOT 1 -8.4590420045506 -8.459E+00 3.687E-02 2.963E+00
scprqt: <Vxc>= -3.3642414E-01 hartree
Simple mixing update:
residual square of the potential: 1.2664155235412144
scfcv_core: previous iteration took 8.84 [s]
ITER STEP NUMBER 2
vtorho: nnsclo_now = 2, note that nnsclo, dbl_nnsclo, istep= 0 0 2
newocc: new Fermi energy is 0.165399 (Ha), 4.500739 (eV)
with nelect: 8.000000, after number of bisections: 40
mkrho: echo density (plane-wave part only)
Total charge density [el/Bohr^3]
Maximum= 8.3659E-02 at reduced coord. 0.0833 0.1250 0.7083
Minimum= 1.4266E-03 at reduced coord. 0.0000 0.0000 0.0000
Integrated= 8.0000E+00
Total charge density [el/Bohr^3]
Maximum= 8.3659E-02 at reduced coord. 0.0833 0.1250 0.7083
Minimum= 1.4266E-03 at reduced coord. 0.0000 0.0000 0.0000
Integrated= 8.0000E+00
ETOT 2 -8.4625536169133 -3.512E-03 1.542E-02 8.969E-02
scprqt: <Vxc>= -3.3817258E-01 hartree
Pulay update with 1 previous iterations:
mixing of old trial potential: alpha(m:m-4)= 1.17 -0.168
scfcv_core: previous iteration took 8.85 [s]
ITER STEP NUMBER 3
vtorho: nnsclo_now = 1, note that nnsclo, dbl_nnsclo, istep= 0 0 3
newocc: new Fermi energy is 0.164549 (Ha), 4.477603 (eV)
with nelect: 8.000000, after number of bisections: 41
mkrho: echo density (plane-wave part only)
Total charge density [el/Bohr^3]
Maximum= 8.3191E-02 at reduced coord. 0.0833 0.1250 0.7083
Minimum= 1.4279E-03 at reduced coord. 0.0000 0.0000 0.0000
Integrated= 8.0000E+00
Total charge density [el/Bohr^3]
Maximum= 8.3191E-02 at reduced coord. 0.0833 0.1250 0.7083
Minimum= 1.4279E-03 at reduced coord. 0.0000 0.0000 0.0000
Integrated= 8.0000E+00
ETOT 3 -8.4625971757400 -4.356E-05 2.736E-03 1.261E-03
scprqt: <Vxc>= -3.3854695E-01 hartree
Pulay update with 2 previous iterations:
mixing of old trial potential: alpha(m:m-4)= 1.22 -0.256 0.332E-01
scfcv_core: previous iteration took 4.76 [s]
ITER STEP NUMBER 4
vtorho: nnsclo_now = 1, note that nnsclo, dbl_nnsclo, istep= 0 0 4
newocc: new Fermi energy is 0.164251 (Ha), 4.469487 (eV)
with nelect: 8.000000, after number of bisections: 38
mkrho: echo density (plane-wave part only)
Total charge density [el/Bohr^3]
Maximum= 8.3190E-02 at reduced coord. 0.0833 0.1250 0.7083
Minimum= 1.4281E-03 at reduced coord. 0.0000 0.0000 0.0000
Integrated= 8.0000E+00
Total charge density [el/Bohr^3]
Maximum= 8.3190E-02 at reduced coord. 0.0833 0.1250 0.7083
Minimum= 1.4281E-03 at reduced coord. 0.0000 0.0000 0.0000
Integrated= 8.0000E+00
ETOT 4 -8.4625974759727 -3.002E-07 5.537E-04 7.676E-05
scprqt: <Vxc>= -3.3857615E-01 hartree
Pulay update with 3 previous iterations:
mixing of old trial potential: alpha(m:m-4)= 1.37 -0.430 0.648E-01 -0.937E-02
scfcv_core: previous iteration took 4.42 [s]
ITER STEP NUMBER 5
vtorho: nnsclo_now = 1, note that nnsclo, dbl_nnsclo, istep= 0 0 5
newocc: new Fermi energy is 0.164243 (Ha), 4.469277 (eV)
with nelect: 8.000000, after number of bisections: 42
mkrho: echo density (plane-wave part only)
Total charge density [el/Bohr^3]
Maximum= 8.3184E-02 at reduced coord. 0.0833 0.1250 0.7083
Minimum= 1.4280E-03 at reduced coord. 0.0000 0.0000 0.0000
Integrated= 8.0000E+00
Total charge density [el/Bohr^3]
Maximum= 8.3184E-02 at reduced coord. 0.0833 0.1250 0.7083
Minimum= 1.4280E-03 at reduced coord. 0.0000 0.0000 0.0000
Integrated= 8.0000E+00
ETOT 5 -8.4625974925564 -1.658E-08 1.612E-04 8.485E-07
scprqt: <Vxc>= -3.3858540E-01 hartree
Pulay update with 4 previous iterations:
mixing of old trial potential: alpha(m:m-4)= 1.22 -0.262 0.511E-01 -0.582E-02 0.995E-03
scfcv_core: previous iteration took 4.42 [s]
ITER STEP NUMBER 6
vtorho: nnsclo_now = 1, note that nnsclo, dbl_nnsclo, istep= 0 0 6
newocc: new Fermi energy is 0.164235 (Ha), 4.469059 (eV)
with nelect: 8.000000, after number of bisections: 38
mkrho: echo density (plane-wave part only)
Total charge density [el/Bohr^3]
Maximum= 8.3184E-02 at reduced coord. 0.0833 0.1250 0.7083
Minimum= 1.4280E-03 at reduced coord. 0.0000 0.0000 0.0000
Integrated= 8.0000E+00
Total charge density [el/Bohr^3]
Maximum= 8.3184E-02 at reduced coord. 0.0833 0.1250 0.7083
Minimum= 1.4280E-03 at reduced coord. 0.0000 0.0000 0.0000
Integrated= 8.0000E+00
ETOT 6 -8.4625974926477 -9.138E-11 1.553E-04 7.717E-09
scprqt: <Vxc>= -3.3858597E-01 hartree
Pulay update with 5 previous iterations:
mixing of old trial potential: alpha(m:m-4)= 1.21 -0.237 0.368E-01 -0.585E-02 0.633E-03
scfcv_core: previous iteration took 4.49 [s]
ITER STEP NUMBER 7
vtorho: nnsclo_now = 1, note that nnsclo, dbl_nnsclo, istep= 0 0 7
newocc: new Fermi energy is 0.164234 (Ha), 4.469046 (eV)
with nelect: 8.000000, after number of bisections: 42
mkrho: echo density (plane-wave part only)
Total charge density [el/Bohr^3]
Maximum= 8.3184E-02 at reduced coord. 0.0833 0.1250 0.7083
Minimum= 1.4280E-03 at reduced coord. 0.0000 0.0000 0.0000
Integrated= 8.0000E+00
Total charge density [el/Bohr^3]
Maximum= 8.3184E-02 at reduced coord. 0.0833 0.1250 0.7083
Minimum= 1.4280E-03 at reduced coord. 0.0000 0.0000 0.0000
Integrated= 8.0000E+00
ETOT 7 -8.4625974926484 -6.892E-13 1.091E-04 4.854E-11
scprqt: <Vxc>= -3.3858601E-01 hartree
At SCF step 7 vres2 = 4.85E-11 < tolvrs= 1.00E-10 =>converged.
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= -2.77480486E-06 sigma(3 2)= -1.09619999E-14
sigma(2 2)= -2.77480488E-06 sigma(3 1)= 1.09629012E-14
sigma(3 3)= -2.77480484E-06 sigma(2 1)= 1.55034501E-14
fftdatar_write: About to write data to: aiidao_TIM1_DEN with iomode: IO_MODE_FORTRAN
IO operation completed. cpu: 0.00 [s] , wall: 0.00 [s] <<< TIME
- Creating netcdf file WITHOUT MPI-IO support: aiidao_GSR.nc
Integrated electronic density in atomic spheres:
------------------------------------------------
Atom Sphere_radius Integrated_density
1 2.00000 1.79916210
2 2.00000 1.79916210
Write iteration in HIST netCDF file (also create it)
---OUTPUT-----------------------------------------------------------------------
Cartesian coordinates (xcart) [bohr]
0.00000000000000E+00 0.00000000000000E+00 0.00000000000000E+00
3.65387049962500E+00 2.10956311657500E+00 1.49168638505000E+00
Reduced coordinates (xred)
0.00000000000000E+00 0.00000000000000E+00 0.00000000000000E+00
2.50000000000000E-01 2.50000000000000E-01 2.50000000000000E-01
Cartesian forces (fcart) [Ha/bohr]; max,rms= 4.52770E-25 3.64514E-25 (free atoms)
-4.52769528987008E-25 8.71355364765251E-26 4.31298901093269E-25
4.52769528987008E-25 -8.71355364765250E-26 -4.31298901093269E-25
Reduced forces (fred)
3.30872245021211E-24 1.10290748340404E-24 -1.10290748340404E-24
-3.30872245021211E-24 -1.10290748340404E-24 1.10290748340404E-24
Total energy (etotal) [Ha]= -8.46259749264842E+00
At Broyd/MD step 1, gradients are converged :
max grad (force/stress) = 4.5277E-25 < tolmxf= 5.0000E-05 ha/bohr (free atoms)
================================================================================
----iterations are completed or convergence reached----
=== Gap info ===
>>>> For spin 1
Minimum direct gap = 2.5746 [eV], located at k-point : -0.0250 0.0250 0.0250
Fundamental gap = 0.6555 [eV], Top of valence bands at : 0.0250 0.0250 0.0250
Bottom of conduction at : 0.4250 0.4250 0.0250
Mean square residual over all n,k,spin= 13.377E-08; max= 10.906E-05
0.0250 0.0250 0.0250 1 8.98508E-16 kpt; spin; max resid(k); each band:
2.64E-16 2.47E-16 2.60E-16 1.71E-16 5.48E-16 8.26E-16 6.87E-16 8.99E-16
0.0750 0.0250 0.0250 1 2.58031E-15 kpt; spin; max resid(k); each band:
9.27E-16 7.59E-16 8.14E-16 3.05E-16 2.55E-16 2.58E-15 1.10E-15 2.39E-15
0.1250 0.0250 0.0250 1 1.50183E-14 kpt; spin; max resid(k); each band:
2.28E-15 1.99E-15 1.09E-15 3.75E-16 5.41E-15 6.43E-16 1.71E-15 1.50E-14
0.1750 0.0250 0.0250 1 1.23098E-12 kpt; spin; max resid(k); each band:
3.80E-15 3.49E-15 1.31E-15 5.77E-16 8.96E-15 8.50E-16 1.55E-15 1.23E-12
0.2250 0.0250 0.0250 1 4.80082E-09 kpt; spin; max resid(k); each band:
4.91E-15 5.26E-15 1.50E-15 6.05E-16 1.22E-14 1.53E-15 1.73E-15 4.80E-09
0.2750 0.0250 0.0250 1 7.68562E-06 kpt; spin; max resid(k); each band:
4.92E-15 6.99E-15 1.64E-15 4.04E-16 1.27E-14 1.68E-15 2.26E-15 7.69E-06
0.3250 0.0250 0.0250 1 2.54610E-05 kpt; spin; max resid(k); each band:
4.57E-15 7.26E-15 1.30E-15 8.52E-16 1.07E-14 2.08E-15 1.53E-15 2.55E-05
0.4750 0.0250 0.0250 1 4.66545E-13 kpt; spin; max resid(k); each band:
4.47E-15 1.09E-14 5.64E-16 4.26E-16 1.03E-14 5.54E-16 1.86E-15 4.67E-13
-0.4750 0.0250 0.0250 1 1.03830E-13 kpt; spin; max resid(k); each band:
4.15E-15 9.95E-15 5.31E-16 3.88E-16 9.97E-15 1.71E-15 9.21E-16 1.04E-13
-0.4250 0.0250 0.0250 1 4.51173E-12 kpt; spin; max resid(k); each band:
4.59E-15 9.23E-15 5.46E-16 2.27E-16 1.04E-14 1.67E-15 6.32E-16 4.51E-12
-0.3750 0.0250 0.0250 1 5.67842E-09 kpt; spin; max resid(k); each band:
4.49E-15 1.00E-14 3.30E-16 5.48E-16 1.04E-14 1.39E-15 6.03E-16 5.68E-09
-0.3250 0.0250 0.0250 1 4.95594E-07 kpt; spin; max resid(k); each band:
4.20E-15 8.87E-15 6.64E-16 1.31E-15 1.08E-14 7.35E-16 1.49E-15 4.96E-07
-0.2750 0.0250 0.0250 1 1.98412E-08 kpt; spin; max resid(k); each band:
4.87E-15 7.19E-15 6.98E-16 1.59E-15 1.21E-14 1.34E-15 1.23E-15 1.98E-08
-0.2250 0.0250 0.0250 1 1.08559E-08 kpt; spin; max resid(k); each band:
4.84E-15 6.05E-15 8.86E-16 1.28E-15 1.46E-14 1.32E-15 1.98E-15 1.09E-08
-0.1750 0.0250 0.0250 1 7.03180E-10 kpt; spin; max resid(k); each band:
4.62E-15 4.69E-15 1.02E-15 1.13E-15 1.50E-14 1.27E-15 2.03E-15 7.03E-10
-0.1250 0.0250 0.0250 1 7.80183E-14 kpt; spin; max resid(k); each band:
3.30E-15 2.98E-15 9.82E-16 8.40E-16 1.06E-14 1.00E-15 1.34E-15 7.80E-14
-0.0750 0.0250 0.0250 1 8.76135E-15 kpt; spin; max resid(k); each band:
1.78E-15 1.57E-15 9.09E-16 4.85E-16 4.89E-15 1.44E-15 1.02E-15 8.76E-15
-0.0250 0.0250 0.0250 1 1.50315E-15 kpt; spin; max resid(k); each band:
6.04E-16 4.66E-16 5.16E-16 4.01E-16 1.06E-15 1.02E-15 4.43E-16 1.50E-15
0.0750 0.0750 0.0250 1 2.85544E-15 kpt; spin; max resid(k); each band:
1.20E-15 5.94E-16 9.10E-16 6.43E-16 1.88E-15 2.19E-15 9.15E-16 2.86E-15
0.1250 0.0750 0.0250 1 9.85954E-15 kpt; spin; max resid(k); each band:
2.19E-15 1.03E-15 1.76E-15 6.59E-16 4.13E-15 3.65E-15 4.21E-15 9.86E-15
0.1750 0.0750 0.0250 1 9.16403E-13 kpt; spin; max resid(k); each band:
3.49E-15 2.38E-15 2.05E-15 9.44E-16 1.46E-14 4.34E-15 3.38E-15 9.16E-13
0.2250 0.0750 0.0250 1 8.69031E-11 kpt; spin; max resid(k); each band:
4.50E-15 3.89E-15 2.75E-15 1.59E-15 1.83E-14 1.84E-15 3.63E-15 8.69E-11
0.2750 0.0750 0.0250 1 1.20633E-11 kpt; spin; max resid(k); each band:
5.40E-15 5.60E-15 3.00E-15 2.14E-15 1.52E-14 9.71E-16 2.85E-15 1.21E-11
0.3250 0.0750 0.0250 1 3.85554E-11 kpt; spin; max resid(k); each band:
5.03E-15 6.73E-15 2.53E-15 2.25E-15 1.23E-14 1.56E-15 1.93E-15 3.86E-11
0.3750 0.0750 0.0250 1 5.54595E-12 kpt; spin; max resid(k); each band:
4.42E-15 8.34E-15 2.60E-15 2.01E-15 1.09E-14 2.05E-15 1.19E-15 5.55E-12
0.4250 0.0750 0.0250 1 7.17382E-11 kpt; spin; max resid(k); each band:
3.36E-15 1.00E-14 2.70E-15 1.21E-15 1.02E-14 4.20E-15 1.27E-15 7.17E-11
0.4750 0.0750 0.0250 1 5.90239E-10 kpt; spin; max resid(k); each band:
3.32E-15 1.00E-14 2.39E-15 7.16E-16 1.01E-14 7.60E-15 9.90E-16 5.90E-10
-0.4250 0.0750 0.0250 1 1.26234E-11 kpt; spin; max resid(k); each band:
3.84E-15 9.39E-15 2.45E-15 5.47E-16 1.00E-14 8.32E-15 9.87E-16 1.26E-11
-0.3750 0.0750 0.0250 1 5.02518E-08 kpt; spin; max resid(k); each band:
3.50E-15 1.05E-14 2.50E-15 7.68E-16 1.01E-14 4.49E-15 1.91E-15 5.03E-08
-0.3250 0.0750 0.0250 1 6.41508E-08 kpt; spin; max resid(k); each band:
4.06E-15 9.15E-15 3.07E-15 1.07E-15 1.10E-14 2.28E-15 2.58E-15 6.42E-08
-0.2750 0.0750 0.0250 1 6.69506E-08 kpt; spin; max resid(k); each band:
5.40E-15 7.20E-15 3.23E-15 1.13E-15 1.22E-14 1.27E-15 3.31E-15 6.70E-08
-0.2250 0.0750 0.0250 1 2.80765E-08 kpt; spin; max resid(k); each band:
5.73E-15 6.56E-15 4.16E-15 8.60E-16 1.45E-14 1.17E-15 4.75E-15 2.81E-08
-0.1750 0.0750 0.0250 1 5.95620E-09 kpt; spin; max resid(k); each band:
4.79E-15 4.39E-15 3.78E-15 5.92E-16 1.72E-14 1.54E-15 8.61E-15 5.96E-09
-0.1250 0.0750 0.0250 1 1.16158E-11 kpt; spin; max resid(k); each band:
3.95E-15 2.84E-15 3.22E-15 5.00E-16 1.68E-14 9.24E-16 7.31E-15 1.16E-11
-0.0750 0.0750 0.0250 1 3.48548E-14 kpt; spin; max resid(k); each band:
2.65E-15 1.33E-15 2.53E-15 2.40E-16 5.65E-15 2.92E-15 5.16E-15 3.49E-14
-0.0250 0.0750 0.0250 1 5.51090E-15 kpt; spin; max resid(k); each band:
1.49E-15 9.70E-16 1.21E-15 3.56E-16 2.47E-15 3.31E-15 2.83E-15 5.51E-15
0.1250 0.1250 0.0250 1 1.64277E-13 kpt; spin; max resid(k); each band:
2.68E-15 4.70E-16 1.37E-15 1.38E-15 4.25E-15 3.08E-15 2.72E-15 1.64E-13
0.1750 0.1250 0.0250 1 5.50728E-12 kpt; spin; max resid(k); each band:
3.56E-15 9.20E-16 2.32E-15 1.30E-15 7.50E-15 9.62E-15 1.23E-14 5.51E-12
0.2250 0.1250 0.0250 1 1.80541E-12 kpt; spin; max resid(k); each band:
4.43E-15 2.18E-15 3.00E-15 2.09E-15 1.29E-14 4.06E-15 4.77E-15 1.81E-12
0.2750 0.1250 0.0250 1 3.68828E-14 kpt; spin; max resid(k); each band:
5.44E-15 3.74E-15 3.49E-15 2.61E-15 1.22E-14 3.10E-15 3.23E-15 3.69E-14
0.3250 0.1250 0.0250 1 3.87308E-14 kpt; spin; max resid(k); each band:
5.36E-15 5.66E-15 4.07E-15 2.53E-15 1.09E-14 3.70E-15 2.55E-15 3.87E-14
0.3750 0.1250 0.0250 1 2.80911E-14 kpt; spin; max resid(k); each band:
5.02E-15 7.34E-15 4.86E-15 2.00E-15 9.75E-15 5.58E-15 1.53E-15 2.81E-14
0.4250 0.1250 0.0250 1 4.25108E-14 kpt; spin; max resid(k); each band:
4.10E-15 8.75E-15 6.19E-15 1.31E-15 9.20E-15 6.80E-15 1.53E-15 4.25E-14
0.4750 0.1250 0.0250 1 7.56261E-13 kpt; spin; max resid(k); each band:
2.62E-15 1.06E-14 6.53E-15 9.35E-16 8.99E-15 8.66E-15 1.40E-15 7.56E-13
-0.4750 0.1250 0.0250 1 8.37660E-11 kpt; spin; max resid(k); each band:
1.65E-15 1.08E-14 6.01E-15 7.08E-16 9.07E-15 1.26E-14 1.48E-15 8.38E-11
-0.4250 0.1250 0.0250 1 3.86569E-08 kpt; spin; max resid(k); each band:
2.79E-15 9.31E-15 4.02E-15 7.43E-16 9.91E-15 1.59E-14 1.35E-15 3.87E-08
-0.3750 0.1250 0.0250 1 1.00353E-08 kpt; spin; max resid(k); each band:
2.75E-15 1.06E-14 4.78E-15 1.16E-15 1.09E-14 1.02E-14 2.13E-15 1.00E-08
-0.3250 0.1250 0.0250 1 8.26907E-08 kpt; spin; max resid(k); each band:
4.52E-15 8.98E-15 5.79E-15 1.16E-15 1.06E-14 1.01E-14 4.26E-15 8.27E-08
-0.2750 0.1250 0.0250 1 2.50979E-09 kpt; spin; max resid(k); each band:
5.44E-15 7.00E-15 6.59E-15 8.40E-16 1.05E-14 8.07E-15 7.47E-15 2.51E-09
-0.2250 0.1250 0.0250 1 4.45304E-09 kpt; spin; max resid(k); each band:
6.06E-15 5.96E-15 6.97E-15 7.03E-16 1.10E-14 2.18E-15 9.15E-15 4.45E-09
outwf : prtvol=0 or 1, do not print more k-points.
outwf: writing wavefunctions to: aiidao_WFK with iomode: IO_MODE_FORTRAN_MASTER
WFK output completed. cpu: 0.11 [s] , wall: 0.12 [s] <<< TIME
prteigrs : about to open file aiidao_EIG
Fermi (or HOMO) energy (hartree) = 0.16423 Average Vxc (hartree)= -0.33859
Eigenvalues (hartree) for nkpt= 770 k points:
kpt# 1, nband= 8, wtk= 0.00025, kpt= 0.0250 0.0250 0.0250 (reduced coord)
-0.28088 0.14973 0.15284 0.15284 0.24767 0.24767 0.24776 0.26943
occupation numbers for kpt# 1
2.00000 1.89587 1.81425 1.81425 0.00000 0.00000 0.00000 0.00000
kpt# 2, nband= 8, wtk= 0.00075, kpt= 0.0750 0.0250 0.0250 (reduced coord)
-0.27929 0.13481 0.14679 0.15214 0.24928 0.24970 0.25290 0.28223
occupation numbers for kpt# 2
2.00000 1.99446 1.94073 1.83662 0.00000 0.00000 0.00000 0.00000
kpt# 3, nband= 8, wtk= 0.00075, kpt= 0.1250 0.0250 0.0250 (reduced coord)
-0.27535 0.10526 0.13983 0.14789 0.24661 0.25595 0.26205 0.30966
occupation numbers for kpt# 3
2.00000 1.99998 1.98493 1.92674 0.00000 0.00000 0.00000 0.00000
kpt# 4, nband= 8, wtk= 0.00075, kpt= 0.1750 0.0250 0.0250 (reduced coord)
-0.26912 0.07170 0.13234 0.14157 0.24021 0.26508 0.27256 0.34133
occupation numbers for kpt# 4
2.00000 2.00000 1.99661 1.97872 0.00000 0.00000 0.00000 0.00000
kpt# 5, nband= 8, wtk= 0.00075, kpt= 0.2250 0.0250 0.0250 (reduced coord)
-0.26069 0.03772 0.12520 0.13460 0.23302 0.27355 0.28111 0.37259
occupation numbers for kpt# 5
2.00000 2.00000 1.99919 1.99468 0.00000 0.00000 0.00000 0.00000
kpt# 6, nband= 8, wtk= 0.00075, kpt= 0.2750 0.0250 0.0250 (reduced coord)
-0.25020 0.00479 0.11897 0.12786 0.22605 0.27887 0.28551 0.40061
occupation numbers for kpt# 6
2.00000 2.00000 1.99977 1.99862 0.00001 0.00000 0.00000 0.00000
kpt# 7, nband= 8, wtk= 0.00075, kpt= 0.3250 0.0250 0.0250 (reduced coord)
-0.23796 -0.02617 0.11393 0.12187 0.21999 0.28044 0.28564 0.42543
occupation numbers for kpt# 7
2.00000 2.00000 1.99991 1.99958 0.00003 0.00000 0.00000 0.00000
kpt# 8, nband= 8, wtk= 0.00075, kpt= 0.4750 0.0250 0.0250 (reduced coord)
-0.20059 -0.09445 0.10694 0.11043 0.20991 0.27735 0.27738 0.43820
occupation numbers for kpt# 8
2.00000 2.00000 1.99998 1.99996 0.00022 0.00000 0.00000 0.00000
kpt# 9, nband= 8, wtk= 0.00075, kpt= -0.4750 0.0250 0.0250 (reduced coord)
-0.19735 -0.09918 0.10735 0.10911 0.20943 0.27602 0.27778 0.43757
occupation numbers for kpt# 9
2.00000 2.00000 1.99998 1.99997 0.00024 0.00000 0.00000 0.00000
kpt# 10, nband= 8, wtk= 0.00075, kpt= -0.4250 0.0250 0.0250 (reduced coord)
-0.20354 -0.09001 0.10910 0.10912 0.21041 0.27607 0.27959 0.43854
occupation numbers for kpt# 10
2.00000 2.00000 1.99997 1.99997 0.00020 0.00000 0.00000 0.00000
kpt# 11, nband= 8, wtk= 0.00075, kpt= -0.3750 0.0250 0.0250 (reduced coord)
-0.21549 -0.07066 0.11049 0.11213 0.21278 0.27725 0.28245 0.43902
occupation numbers for kpt# 11
2.00000 2.00000 1.99996 1.99994 0.00012 0.00000 0.00000 0.00000
kpt# 12, nband= 8, wtk= 0.00075, kpt= -0.3250 0.0250 0.0250 (reduced coord)
-0.22908 -0.04527 0.11324 0.11639 0.21670 0.27875 0.28552 0.42867
occupation numbers for kpt# 12
2.00000 2.00000 1.99993 1.99986 0.00006 0.00000 0.00000 0.00000
kpt# 13, nband= 8, wtk= 0.00075, kpt= -0.2750 0.0250 0.0250 (reduced coord)
-0.24221 -0.01612 0.11734 0.12178 0.22196 0.27905 0.28730 0.40925
occupation numbers for kpt# 13
2.00000 2.00000 1.99983 1.99959 0.00002 0.00000 0.00000 0.00000
kpt# 14, nband= 8, wtk= 0.00075, kpt= -0.2250 0.0250 0.0250 (reduced coord)
-0.25391 0.01559 0.12272 0.12812 0.22838 0.27632 0.28590 0.38896
occupation numbers for kpt# 14
2.00000 2.00000 1.99950 1.99854 0.00001 0.00000 0.00000 0.00000
kpt# 15, nband= 8, wtk= 0.00075, kpt= -0.1750 0.0250 0.0250 (reduced coord)
-0.26374 0.04900 0.12919 0.13510 0.23546 0.26971 0.28014 0.36185
occupation numbers for kpt# 15
2.00000 2.00000 1.99819 1.99413 0.00000 0.00000 0.00000 0.00000
kpt# 16, nband= 8, wtk= 0.00075, kpt= -0.1250 0.0250 0.0250 (reduced coord)
-0.27145 0.08308 0.13638 0.14208 0.24242 0.26068 0.27085 0.33038
occupation numbers for kpt# 16
2.00000 2.00000 1.99241 1.97648 0.00000 0.00000 0.00000 0.00000
kpt# 17, nband= 8, wtk= 0.00075, kpt= -0.0750 0.0250 0.0250 (reduced coord)
-0.27692 0.11601 0.14358 0.14797 0.24724 0.25299 0.26049 0.29926
occupation numbers for kpt# 17
2.00000 1.99987 1.96835 1.92549 0.00000 0.00000 0.00000 0.00000
kpt# 18, nband= 8, wtk= 0.00075, kpt= -0.0250 0.0250 0.0250 (reduced coord)
-0.28008 0.14302 0.14960 0.15119 0.24581 0.25108 0.25189 0.27530
occupation numbers for kpt# 18
2.00000 1.97166 1.89832 1.86277 0.00000 0.00000 0.00000 0.00000
kpt# 19, nband= 8, wtk= 0.00075, kpt= 0.0750 0.0750 0.0250 (reduced coord)
-0.27850 0.13322 0.14387 0.14600 0.24223 0.25782 0.25958 0.28505
occupation numbers for kpt# 19
2.00000 1.99596 1.96653 1.94919 0.00000 0.00000 0.00000 0.00000
kpt# 20, nband= 8, wtk= 0.00150, kpt= 0.1250 0.0750 0.0250 (reduced coord)
-0.27534 0.11236 0.13376 0.14373 0.24150 0.26219 0.26867 0.30478
occupation numbers for kpt# 20
2.00000 1.99994 1.99551 1.96740 0.00000 0.00000 0.00000 0.00000
kpt# 21, nband= 8, wtk= 0.00150, kpt= 0.1750 0.0750 0.0250 (reduced coord)
-0.26988 0.08149 0.12510 0.13931 0.24465 0.26084 0.28022 0.33146
occupation numbers for kpt# 21
2.00000 2.00000 1.99920 1.98640 0.00000 0.00000 0.00000 0.00000
kpt# 22, nband= 8, wtk= 0.00150, kpt= 0.2250 0.0750 0.0250 (reduced coord)
-0.26217 0.04839 0.11740 0.13280 0.24365 0.26438 0.29008 0.35327
occupation numbers for kpt# 22
2.00000 2.00000 1.99983 1.99629 0.00000 0.00000 0.00000 0.00000
kpt# 23, nband= 8, wtk= 0.00150, kpt= 0.2750 0.0750 0.0250 (reduced coord)
-0.25235 0.01556 0.11082 0.12564 0.23847 0.27059 0.29577 0.36726
occupation numbers for kpt# 23
2.00000 2.00000 1.99995 1.99911 0.00000 0.00000 0.00000 0.00000
kpt# 24, nband= 8, wtk= 0.00150, kpt= 0.3250 0.0750 0.0250 (reduced coord)
-0.24065 -0.01580 0.10551 0.11882 0.23277 0.27417 0.29660 0.38214
occupation numbers for kpt# 24
2.00000 2.00000 1.99998 1.99977 0.00000 0.00000 0.00000 0.00000
kpt# 25, nband= 8, wtk= 0.00150, kpt= 0.3750 0.0750 0.0250 (reduced coord)
-0.22753 -0.04472 0.10145 0.11298 0.22784 0.27476 0.29406 0.40216
occupation numbers for kpt# 25
2.00000 2.00000 1.99999 1.99993 0.00001 0.00000 0.00000 0.00000
kpt# 26, nband= 8, wtk= 0.00150, kpt= 0.4250 0.0750 0.0250 (reduced coord)
-0.21393 -0.06997 0.09845 0.10865 0.22410 0.27404 0.29020 0.42450
occupation numbers for kpt# 26
2.00000 2.00000 2.00000 1.99997 0.00001 0.00000 0.00000 0.00000
kpt# 27, nband= 8, wtk= 0.00150, kpt= 0.4750 0.0750 0.0250 (reduced coord)
-0.20197 -0.08926 0.09619 0.10632 0.22178 0.27351 0.28660 0.43944
occupation numbers for kpt# 27
2.00000 2.00000 2.00000 1.99998 0.00002 0.00000 0.00000 0.00000
kpt# 28, nband= 8, wtk= 0.00150, kpt= -0.4250 0.0750 0.0250 (reduced coord)
-0.19902 -0.09368 0.09375 0.10799 0.22127 0.27505 0.28388 0.44319
occupation numbers for kpt# 28
2.00000 2.00000 2.00000 1.99997 0.00002 0.00000 0.00000 0.00000
kpt# 29, nband= 8, wtk= 0.00150, kpt= -0.3750 0.0750 0.0250 (reduced coord)
-0.20962 -0.07720 0.09412 0.11145 0.22310 0.27657 0.28562 0.43740
occupation numbers for kpt# 29
2.00000 2.00000 2.00000 1.99995 0.00002 0.00000 0.00000 0.00000
kpt# 30, nband= 8, wtk= 0.00150, kpt= -0.3250 0.0750 0.0250 (reduced coord)
-0.22299 -0.05360 0.09589 0.11627 0.22636 0.27781 0.28880 0.41915
occupation numbers for kpt# 30
2.00000 2.00000 2.00000 1.99986 0.00001 0.00000 0.00000 0.00000
kpt# 31, nband= 8, wtk= 0.00150, kpt= -0.2750 0.0750 0.0250 (reduced coord)
-0.23642 -0.02573 0.09916 0.12221 0.23098 0.27785 0.29172 0.39787
occupation numbers for kpt# 31
2.00000 2.00000 2.00000 1.99955 0.00000 0.00000 0.00000 0.00000
kpt# 32, nband= 8, wtk= 0.00150, kpt= -0.2250 0.0750 0.0250 (reduced coord)
-0.24865 0.00490 0.10398 0.12897 0.23672 0.27515 0.29202 0.38015
occupation numbers for kpt# 32
2.00000 2.00000 1.99999 1.99827 0.00000 0.00000 0.00000 0.00000
kpt# 33, nband= 8, wtk= 0.00150, kpt= -0.1750 0.0750 0.0250 (reduced coord)
-0.25913 0.03727 0.11036 0.13607 0.24311 0.26885 0.28745 0.36383
occupation numbers for kpt# 33
2.00000 2.00000 1.99996 1.99287 0.00000 0.00000 0.00000 0.00000
kpt# 34, nband= 8, wtk= 0.00150, kpt= -0.1250 0.0750 0.0250 (reduced coord)
-0.26756 0.07019 0.11826 0.14274 0.24881 0.26088 0.27790 0.34244
occupation numbers for kpt# 34
2.00000 2.00000 1.99980 1.97322 0.00000 0.00000 0.00000 0.00000
kpt# 35, nband= 8, wtk= 0.00150, kpt= -0.0750 0.0750 0.0250 (reduced coord)
-0.27378 0.10129 0.12799 0.14773 0.24890 0.25802 0.26608 0.31639
occupation numbers for kpt# 35
2.00000 1.99999 1.99858 1.92894 0.00000 0.00000 0.00000 0.00000
kpt# 36, nband= 8, wtk= 0.00150, kpt= -0.0250 0.0750 0.0250 (reduced coord)
-0.27771 0.12425 0.14107 0.14963 0.24623 0.25476 0.25879 0.29292
occupation numbers for kpt# 36
2.00000 1.99933 1.98072 1.89772 0.00000 0.00000 0.00000 0.00000
kpt# 37, nband= 8, wtk= 0.00075, kpt= 0.1250 0.1250 0.0250 (reduced coord)
-0.27298 0.10783 0.12849 0.13001 0.23146 0.27885 0.28170 0.30684
occupation numbers for kpt# 37
2.00000 1.99997 1.99843 1.99787 0.00000 0.00000 0.00000 0.00000
kpt# 38, nband= 8, wtk= 0.00150, kpt= 0.1750 0.1250 0.0250 (reduced coord)
-0.26829 0.08607 0.11713 0.12655 0.22947 0.28350 0.29360 0.32147
occupation numbers for kpt# 38
2.00000 2.00000 1.99984 1.99893 0.00000 0.00000 0.00000 0.00000
kpt# 39, nband= 8, wtk= 0.00150, kpt= 0.2250 0.1250 0.0250 (reduced coord)
-0.26133 0.05656 0.10812 0.12143 0.23360 0.28094 0.30511 0.33160
occupation numbers for kpt# 39
2.00000 2.00000 1.99997 1.99962 0.00000 0.00000 0.00000 0.00000
kpt# 40, nband= 8, wtk= 0.00150, kpt= 0.2750 0.1250 0.0250 (reduced coord)
-0.25220 0.02528 0.10058 0.11456 0.23832 0.27961 0.31265 0.33517
occupation numbers for kpt# 40
2.00000 2.00000 1.99999 1.99990 0.00000 0.00000 0.00000 0.00000
kpt# 41, nband= 8, wtk= 0.00150, kpt= 0.3250 0.1250 0.0250 (reduced coord)
-0.24110 -0.00557 0.09408 0.10770 0.23946 0.28006 0.31484 0.34278
occupation numbers for kpt# 41
2.00000 2.00000 2.00000 1.99998 0.00000 0.00000 0.00000 0.00000
kpt# 42, nband= 8, wtk= 0.00150, kpt= 0.3750 0.1250 0.0250 (reduced coord)
-0.22838 -0.03469 0.08824 0.10221 0.23777 0.27960 0.31277 0.35918
occupation numbers for kpt# 42
2.00000 2.00000 2.00000 1.99999 0.00000 0.00000 0.00000 0.00000
kpt# 43, nband= 8, wtk= 0.00150, kpt= 0.4250 0.1250 0.0250 (reduced coord)
-0.21478 -0.06088 0.08278 0.09892 0.23551 0.27797 0.30853 0.38286
occupation numbers for kpt# 43
2.00000 2.00000 2.00000 2.00000 0.00000 0.00000 0.00000 0.00000
kpt# 44, nband= 8, wtk= 0.00150, kpt= 0.4750 0.1250 0.0250 (reduced coord)
-0.20190 -0.08226 0.07788 0.09797 0.23398 0.27648 0.30390 0.41052
occupation numbers for kpt# 44
2.00000 2.00000 2.00000 2.00000 0.00000 0.00000 0.00000 0.00000
kpt# 45, nband= 8, wtk= 0.00150, kpt= -0.4750 0.1250 0.0250 (reduced coord)
-0.19320 -0.09522 0.07393 0.09911 0.23365 0.27600 0.30000 0.43764
occupation numbers for kpt# 45
2.00000 2.00000 2.00000 2.00000 0.00000 0.00000 0.00000 0.00000
kpt# 46, nband= 8, wtk= 0.00150, kpt= -0.4250 0.1250 0.0250 (reduced coord)
-0.19325 -0.09514 0.07126 0.10207 0.23464 0.27680 0.29743 0.45151
occupation numbers for kpt# 46
2.00000 2.00000 2.00000 1.99999 0.00000 0.00000 0.00000 0.00000
kpt# 47, nband= 8, wtk= 0.00150, kpt= -0.3750 0.1250 0.0250 (reduced coord)
-0.20201 -0.08205 0.07012 0.10660 0.23691 0.27870 0.29643 0.43780
occupation numbers for kpt# 47
2.00000 2.00000 2.00000 1.99998 0.00000 0.00000 0.00000 0.00000
kpt# 48, nband= 8, wtk= 0.00150, kpt= -0.3250 0.1250 0.0250 (reduced coord)
-0.21490 -0.06063 0.07069 0.11246 0.24040 0.28090 0.29688 0.41259
occupation numbers for kpt# 48
2.00000 2.00000 2.00000 1.99994 0.00000 0.00000 0.00000 0.00000
kpt# 49, nband= 8, wtk= 0.00150, kpt= -0.2750 0.1250 0.0250 (reduced coord)
-0.22849 -0.03446 0.07316 0.11934 0.24498 0.28177 0.29811 0.38871
occupation numbers for kpt# 49
2.00000 2.00000 2.00000 1.99975 0.00000 0.00000 0.00000 0.00000
kpt# 50, nband= 8, wtk= 0.00150, kpt= -0.2250 0.1250 0.0250 (reduced coord)
-0.24119 -0.00555 0.07773 0.12684 0.25038 0.27922 0.29807 0.37020
occupation numbers for kpt# 50
2.00000 2.00000 2.00000 1.99887 0.00000 0.00000 0.00000 0.00000
prteigrs : prtvol=0 or 1, do not print more k-points.
Total charge density [el/Bohr^3]
Maximum= 8.3184E-02 at reduced coord. 0.0833 0.1250 0.7083
Next maximum= 8.3184E-02 at reduced coord. 0.1250 0.0833 0.7083
Minimum= 1.4280E-03 at reduced coord. 0.0000 0.0000 0.0000
Next minimum= 1.4280E-03 at reduced coord. 0.2500 0.2500 0.2500
Integrated= 8.0000E+00
Cartesian components of stress tensor (hartree/bohr^3)
sigma(1 1)= -2.77480486E-06 sigma(3 2)= -1.09619999E-14
sigma(2 2)= -2.77480488E-06 sigma(3 1)= 1.09629012E-14
sigma(3 3)= -2.77480484E-06 sigma(2 1)= 1.55034501E-14
-Cartesian components of stress tensor (GPa) [Pressure= 8.1638E-02 GPa]
- sigma(1 1)= -8.16375639E-02 sigma(3 2)= -3.22513119E-10
- sigma(2 2)= -8.16375644E-02 sigma(3 1)= 3.22539634E-10
- sigma(3 3)= -8.16375632E-02 sigma(2 1)= 4.56127173E-10
== END DATASET(S) ==============================================================
================================================================================
-outvars: echo values of variables after computation --------
These variables are accessible in NetCDF format (aiidao_OUT.nc)
acell 1.0000000000E+00 1.0000000000E+00 1.0000000000E+00 Bohr
amu 2.80855000E+01
autoparal 1
chksymbreak 0
ecut 1.00000000E+01 Hartree
ecutsm 5.00000000E-01 Hartree
etotal -8.4625974926E+00
fcart -4.5276952899E-25 8.7135536477E-26 4.3129890109E-25
4.5276952899E-25 -8.7135536477E-26 -4.3129890109E-25
- fftalg 112
ionmov 22
ixc 11
kpt 2.50000000E-02 2.50000000E-02 2.50000000E-02
7.50000000E-02 2.50000000E-02 2.50000000E-02
1.25000000E-01 2.50000000E-02 2.50000000E-02
1.75000000E-01 2.50000000E-02 2.50000000E-02
2.25000000E-01 2.50000000E-02 2.50000000E-02
2.75000000E-01 2.50000000E-02 2.50000000E-02
3.25000000E-01 2.50000000E-02 2.50000000E-02
4.75000000E-01 2.50000000E-02 2.50000000E-02
-4.75000000E-01 2.50000000E-02 2.50000000E-02
-4.25000000E-01 2.50000000E-02 2.50000000E-02
-3.75000000E-01 2.50000000E-02 2.50000000E-02
-3.25000000E-01 2.50000000E-02 2.50000000E-02
-2.75000000E-01 2.50000000E-02 2.50000000E-02
-2.25000000E-01 2.50000000E-02 2.50000000E-02
-1.75000000E-01 2.50000000E-02 2.50000000E-02
-1.25000000E-01 2.50000000E-02 2.50000000E-02
-7.50000000E-02 2.50000000E-02 2.50000000E-02
-2.50000000E-02 2.50000000E-02 2.50000000E-02
7.50000000E-02 7.50000000E-02 2.50000000E-02
1.25000000E-01 7.50000000E-02 2.50000000E-02
1.75000000E-01 7.50000000E-02 2.50000000E-02
2.25000000E-01 7.50000000E-02 2.50000000E-02
2.75000000E-01 7.50000000E-02 2.50000000E-02
3.25000000E-01 7.50000000E-02 2.50000000E-02
3.75000000E-01 7.50000000E-02 2.50000000E-02
4.25000000E-01 7.50000000E-02 2.50000000E-02
4.75000000E-01 7.50000000E-02 2.50000000E-02
-4.25000000E-01 7.50000000E-02 2.50000000E-02
-3.75000000E-01 7.50000000E-02 2.50000000E-02
-3.25000000E-01 7.50000000E-02 2.50000000E-02
-2.75000000E-01 7.50000000E-02 2.50000000E-02
-2.25000000E-01 7.50000000E-02 2.50000000E-02
-1.75000000E-01 7.50000000E-02 2.50000000E-02
-1.25000000E-01 7.50000000E-02 2.50000000E-02
-7.50000000E-02 7.50000000E-02 2.50000000E-02
-2.50000000E-02 7.50000000E-02 2.50000000E-02
1.25000000E-01 1.25000000E-01 2.50000000E-02
1.75000000E-01 1.25000000E-01 2.50000000E-02
2.25000000E-01 1.25000000E-01 2.50000000E-02
2.75000000E-01 1.25000000E-01 2.50000000E-02
3.25000000E-01 1.25000000E-01 2.50000000E-02
3.75000000E-01 1.25000000E-01 2.50000000E-02
4.25000000E-01 1.25000000E-01 2.50000000E-02
4.75000000E-01 1.25000000E-01 2.50000000E-02
-4.75000000E-01 1.25000000E-01 2.50000000E-02
-4.25000000E-01 1.25000000E-01 2.50000000E-02
-3.75000000E-01 1.25000000E-01 2.50000000E-02
-3.25000000E-01 1.25000000E-01 2.50000000E-02
-2.75000000E-01 1.25000000E-01 2.50000000E-02
-2.25000000E-01 1.25000000E-01 2.50000000E-02
outvar_i_n : Printing only first 50 k-points.
kptrlatt 20 0 0 0 20 0 0 0 20
kptrlen 1.46154820E+02
P mkmem 385
natom 2
nband 8
ngfft 24 24 24
nkpt 770
- npkpt 2
nstep 300
nsym 48
ntime 1000
ntypat 1
occ 2.000000 1.895873 1.814252 1.814252 0.000000 0.000000
0.000000 0.000000
2.000000 1.994458 1.940734 1.836617 0.000000 0.000000
0.000000 0.000000
2.000000 1.999985 1.984931 1.926742 0.000000 0.000000
0.000000 0.000000
2.000000 2.000000 1.996611 1.978716 0.000001 0.000000
0.000000 0.000000
2.000000 2.000000 1.999186 1.994682 0.000002 0.000000
0.000000 0.000000
2.000000 2.000000 1.999766 1.998615 0.000009 0.000000
0.000000 0.000000
2.000000 2.000000 1.999915 1.999582 0.000029 0.000000
0.000000 0.000000
2.000000 2.000000 1.999979 1.999958 0.000215 0.000000
0.000000 0.000000
2.000000 2.000000 1.999977 1.999967 0.000237 0.000000
0.000000 0.000000
2.000000 2.000000 1.999967 1.999967 0.000195 0.000000
0.000000 0.000000
2.000000 2.000000 1.999957 1.999940 0.000121 0.000000
0.000000 0.000000
2.000000 2.000000 1.999926 1.999860 0.000055 0.000000
0.000000 0.000000
2.000000 2.000000 1.999831 1.999589 0.000019 0.000000
0.000000 0.000000
2.000000 2.000000 1.999504 1.998540 0.000005 0.000000
0.000000 0.000000
2.000000 2.000000 1.998192 1.994127 0.000001 0.000000
0.000000 0.000000
2.000000 2.000000 1.992409 1.976483 0.000000 0.000000
0.000000 0.000000
2.000000 1.999870 1.968354 1.925491 0.000000 0.000000
0.000000 0.000000
2.000000 1.971661 1.898324 1.862772 0.000000 0.000000
0.000000 0.000000
2.000000 1.995964 1.966535 1.949190 0.000000 0.000000
0.000000 0.000000
2.000000 1.999938 1.995506 1.967404 0.000000 0.000000
0.000000 0.000000
2.000000 2.000000 1.999203 1.986400 0.000000 0.000000
0.000000 0.000000
2.000000 2.000000 1.999829 1.996285 0.000000 0.000000
0.000000 0.000000
2.000000 2.000000 1.999954 1.999111 0.000001 0.000000
0.000000 0.000000
2.000000 2.000000 1.999984 1.999773 0.000002 0.000000
0.000000 0.000000
2.000000 2.000000 1.999993 1.999929 0.000006 0.000000
0.000000 0.000000
2.000000 2.000000 1.999996 1.999970 0.000013 0.000000
0.000000 0.000000
2.000000 2.000000 1.999998 1.999981 0.000020 0.000000
0.000000 0.000000
2.000000 2.000000 1.999998 1.999974 0.000022 0.000000
0.000000 0.000000
2.000000 2.000000 1.999998 1.999948 0.000015 0.000000
0.000000 0.000000
2.000000 2.000000 1.999998 1.999863 0.000008 0.000000
0.000000 0.000000
2.000000 2.000000 1.999996 1.999552 0.000003 0.000000
0.000000 0.000000
2.000000 2.000000 1.999988 1.998273 0.000001 0.000000
0.000000 0.000000
2.000000 2.000000 1.999958 1.992873 0.000000 0.000000
0.000000 0.000000
2.000000 2.000000 1.999797 1.973217 0.000000 0.000000
0.000000 0.000000
2.000000 1.999993 1.998578 1.928939 0.000000 0.000000
0.000000 0.000000
2.000000 1.999327 1.980716 1.897724 0.000000 0.000000
0.000000 0.000000
2.000000 1.999975 1.998431 1.997872 0.000003 0.000000
0.000000 0.000000
2.000000 2.000000 1.999838 1.998934 0.000004 0.000000
0.000000 0.000000
2.000000 2.000000 1.999973 1.999618 0.000002 0.000000
0.000000 0.000000
2.000000 2.000000 1.999994 1.999903 0.000001 0.000000
0.000000 0.000000
2.000000 2.000000 1.999998 1.999975 0.000001 0.000000
0.000000 0.000000
2.000000 2.000000 1.999999 1.999992 0.000001 0.000000
0.000000 0.000000
2.000000 2.000000 2.000000 1.999996 0.000001 0.000000
0.000000 0.000000
2.000000 2.000000 2.000000 1.999996 0.000002 0.000000
0.000000 0.000000
2.000000 2.000000 2.000000 1.999996 0.000002 0.000000
0.000000 0.000000
2.000000 2.000000 2.000000 1.999992 0.000002 0.000000
0.000000 0.000000
2.000000 2.000000 2.000000 1.999980 0.000001 0.000000
0.000000 0.000000
2.000000 2.000000 2.000000 1.999936 0.000000 0.000000
0.000000 0.000000
2.000000 2.000000 2.000000 1.999748 0.000000 0.000000
0.000000 0.000000
2.000000 2.000000 2.000000 1.998870 0.000000 0.000000
0.000000 0.000000
prtocc : prtvol=0, do not print more k-points.
occopt 3
pawecutdg 2.00000000E+01 Hartree
rprim 7.3077409993E+00 0.0000000000E+00 0.0000000000E+00
3.6538704996E+00 6.3286893497E+00 0.0000000000E+00
3.6538704996E+00 2.1095631166E+00 5.9667455402E+00
shiftk 5.00000000E-01 5.00000000E-01 5.00000000E-01
spgroup 227
strten -2.7748048631E-06 -2.7748048811E-06 -2.7748048408E-06
-1.0961999938E-14 1.0962901187E-14 1.5503450094E-14
symrel 1 0 0 0 1 0 0 0 1 -1 0 0 0 -1 0 0 0 -1
0 -1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1 0
-1 0 0 -1 0 1 -1 1 0 1 0 0 1 0 -1 1 -1 0
0 1 -1 1 0 -1 0 0 -1 0 -1 1 -1 0 1 0 0 1
-1 0 0 -1 1 0 -1 0 1 1 0 0 1 -1 0 1 0 -1
0 -1 1 1 -1 0 0 -1 0 0 1 -1 -1 1 0 0 1 0
1 0 0 0 0 1 0 1 0 -1 0 0 0 0 -1 0 -1 0
0 1 -1 0 0 -1 1 0 -1 0 -1 1 0 0 1 -1 0 1
-1 0 1 -1 1 0 -1 0 0 1 0 -1 1 -1 0 1 0 0
0 -1 0 1 -1 0 0 -1 1 0 1 0 -1 1 0 0 1 -1
1 0 -1 0 0 -1 0 1 -1 -1 0 1 0 0 1 0 -1 1
0 1 0 0 0 1 1 0 0 0 -1 0 0 0 -1 -1 0 0
1 0 -1 0 1 -1 0 0 -1 -1 0 1 0 -1 1 0 0 1
0 -1 0 0 -1 1 1 -1 0 0 1 0 0 1 -1 -1 1 0
-1 0 1 -1 0 0 -1 1 0 1 0 -1 1 0 0 1 -1 0
0 1 0 1 0 0 0 0 1 0 -1 0 -1 0 0 0 0 -1
0 0 -1 0 1 -1 1 0 -1 0 0 1 0 -1 1 -1 0 1
1 -1 0 0 -1 1 0 -1 0 -1 1 0 0 1 -1 0 1 0
0 0 1 1 0 0 0 1 0 0 0 -1 -1 0 0 0 -1 0
-1 1 0 -1 0 0 -1 0 1 1 -1 0 1 0 0 1 0 -1
0 0 1 0 1 0 1 0 0 0 0 -1 0 -1 0 -1 0 0
1 -1 0 0 -1 0 0 -1 1 -1 1 0 0 1 0 0 1 -1
0 0 -1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1
-1 1 0 -1 0 1 -1 0 0 1 -1 0 1 0 -1 1 0 0
tnons 0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
0.0000000 0.0000000 0.0000000 0.2500000 0.2500000 0.2500000
tolvrs 1.00000000E-10
tsmear 5.00000000E-03 Hartree
typat 1 1
wtk 0.00025 0.00075 0.00075 0.00075 0.00075 0.00075
0.00075 0.00075 0.00075 0.00075 0.00075 0.00075
0.00075 0.00075 0.00075 0.00075 0.00075 0.00075
0.00075 0.00150 0.00150 0.00150 0.00150 0.00150
0.00150 0.00150 0.00150 0.00150 0.00150 0.00150
0.00150 0.00150 0.00150 0.00150 0.00150 0.00150
0.00075 0.00150 0.00150 0.00150 0.00150 0.00150
0.00150 0.00150 0.00150 0.00150 0.00150 0.00150
0.00150 0.00150
outvars : Printing only first 50 k-points.
xangst 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
1.9335449915E+00 1.1163327214E+00 7.8936643733E-01
xcart 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
3.6538704996E+00 2.1095631166E+00 1.4916863850E+00
xred 0.0000000000E+00 0.0000000000E+00 0.0000000000E+00
2.5000000000E-01 2.5000000000E-01 2.5000000000E-01
znucl 14.00000
================================================================================
================================================================================
Suggested references for the acknowledgment of ABINIT usage.
The users of ABINIT have little formal obligations with respect to the ABINIT group
(those specified in the GNU General Public License, http://www.gnu.org/copyleft/gpl.txt).
However, it is common practice in the scientific literature,
to acknowledge the efforts of people that have made the research possible.
In this spirit, please find below suggested citations of work written by ABINIT developers,
corresponding to implementations inside of ABINIT that you have used in the present run.
Note also that it will be of great value to readers of publications presenting these results,
to read papers enabling them to understand the theoretical formalism and details
of the ABINIT implementation.
For information on why they are suggested, see also https://docs.abinit.org/theory/acknowledgments.
-
- [1] The Abinit project: Impact, environment and recent developments.
- Computer Phys. Comm. 248, 107042 (2020).
- X.Gonze, B. Amadon, G. Antonius, F.Arnardi, L.Baguet, J.-M.Beuken,
- J.Bieder, F.Bottin, J.Bouchet, E.Bousquet, N.Brouwer, F.Bruneval,
- G.Brunin, T.Cavignac, J.-B. Charraud, Wei Chen, M.Cote, S.Cottenier,
- J.Denier, G.Geneste, Ph.Ghosez, M.Giantomassi, Y.Gillet, O.Gingras,
- D.R.Hamann, G.Hautier, Xu He, N.Helbig, N.Holzwarth, Y.Jia, F.Jollet,
- W.Lafargue-Dit-Hauret, K.Lejaeghere, M.A.L.Marques, A.Martin, C.Martins,
- H.P.C. Miranda, F.Naccarato, K. Persson, G.Petretto, V.Planes, Y.Pouillon,
- S.Prokhorenko, F.Ricci, G.-M.Rignanese, A.H.Romero, M.M.Schmitt, M.Torrent,
- M.J.van Setten, B.Van Troeye, M.J.Verstraete, G.Zerah and J.W.Zwanzig
- Comment: the fifth generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm.
- is available at https://www.abinit.org/sites/default/files/ABINIT20.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2020
-
- [2] Optimized norm-conserving Vanderbilt pseudopotentials.
- D.R. Hamann, Phys. Rev. B 88, 085117 (2013).
- Comment: Some pseudopotential generated using the ONCVPSP code were used.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#hamann2013
-
- [3] Recent developments in the ABINIT software package.
- Computer Phys. Comm. 205, 106 (2016).
- X.Gonze, F.Jollet, F.Abreu Araujo, D.Adams, B.Amadon, T.Applencourt,
- C.Audouze, J.-M.Beuken, J.Bieder, A.Bokhanchuk, E.Bousquet, F.Bruneval
- D.Caliste, M.Cote, F.Dahm, F.Da Pieve, M.Delaveau, M.Di Gennaro,
- B.Dorado, C.Espejo, G.Geneste, L.Genovese, A.Gerossier, M.Giantomassi,
- Y.Gillet, D.R.Hamann, L.He, G.Jomard, J.Laflamme Janssen, S.Le Roux,
- A.Levitt, A.Lherbier, F.Liu, I.Lukacevic, A.Martin, C.Martins,
- M.J.T.Oliveira, S.Ponce, Y.Pouillon, T.Rangel, G.-M.Rignanese,
- A.H.Romero, B.Rousseau, O.Rubel, A.A.Shukri, M.Stankovski, M.Torrent,
- M.J.Van Setten, B.Van Troeye, M.J.Verstraete, D.Waroquier, J.Wiktor,
- B.Xu, A.Zhou, J.W.Zwanziger.
- Comment: the fourth generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm.
- is available at https://www.abinit.org/sites/default/files/ABINIT16.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2016
-
- [4] ABINIT: First-principles approach of materials and nanosystem properties.
- Computer Phys. Comm. 180, 2582-2615 (2009).
- X. Gonze, B. Amadon, P.-M. Anglade, J.-M. Beuken, F. Bottin, P. Boulanger, F. Bruneval,
- D. Caliste, R. Caracas, M. Cote, T. Deutsch, L. Genovese, Ph. Ghosez, M. Giantomassi
- S. Goedecker, D.R. Hamann, P. Hermet, F. Jollet, G. Jomard, S. Leroux, M. Mancini, S. Mazevet,
- M.J.T. Oliveira, G. Onida, Y. Pouillon, T. Rangel, G.-M. Rignanese, D. Sangalli, R. Shaltaf,
- M. Torrent, M.J. Verstraete, G. Zerah, J.W. Zwanziger
- Comment: the third generic paper describing the ABINIT project.
- Note that a version of this paper, that is not formatted for Computer Phys. Comm.
- is available at https://www.abinit.org/sites/default/files/ABINIT_CPC_v10.pdf .
- The licence allows the authors to put it on the Web.
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2009
-
- And optionally:
-
- [5] A brief introduction to the ABINIT software package.
- Z. Kristallogr. 220, 558-562 (2005).
- X. Gonze, G.-M. Rignanese, M. Verstraete, J.-M. Beuken, Y. Pouillon, R. Caracas, F. Jollet,
- M. Torrent, G. Zerah, M. Mikami, Ph. Ghosez, M. Veithen, J.-Y. Raty, V. Olevano, F. Bruneval,
- L. Reining, R. Godby, G. Onida, D.R. Hamann, and D.C. Allan.
- Comment: the second generic paper describing the ABINIT project. Note that this paper
- should be cited especially if you are using the GW part of ABINIT, as several authors
- of this part are not in the list of authors of the first or third paper.
- The .pdf of the latter paper is available at https://www.abinit.org/sites/default/files/zfk_0505-06_558-562.pdf.
- Note that it should not redistributed (Copyright by Oldenburg Wissenschaftverlag,
- the licence allows the authors to put it on the Web).
- DOI and bibtex: see https://docs.abinit.org/theory/bibliography/#gonze2005
Proc. 0 individual time (sec): cpu= 39.6 wall= 40.8
Calculation completed.
.Delivered 0 WARNINGs and 2 COMMENTs to log file.
--- !FinalSummary
program: abinit
version: 9.2.1
start_datetime: Mon Mar 22 08:59:48 2021
end_datetime: Mon Mar 22 09:00:29 2021
overall_cpu_time: 79.7
overall_wall_time: 81.6
exit_requested_by_user: no
timelimit: 0
pseudos:
Si : d0073fded4224d2a84edd944f9c8a1a0
usepaw: 0
mpi_procs: 2
omp_threads: 1
num_warnings: 0
num_comments: 2
...
@chrisjsewell thanks for looking into this. Did you use the exact same compilation as the current QM or did you apply with the changes suggested by @gmatteo ?
Did you use the exact same compilation as the current QM
yes, no changes to the abinit compilation
Tried to run manually with the same input files you described in QM 20.11.2a and still failed:
(aiida) max@9b586fa4f7ce:~/tmp$ mpirun -np 2 /usr/local/bin/abinit aiida.in > aiida.out
Program received signal SIGILL: Illegal instruction.
Backtrace for this error:
#0 0x7f434095b2ed in ???
#1 0x7f434095a503 in ???
#2 0x7f433fb6203f in ???
#3 0x55d3e2b025a9 in __m_cppopts_dumper_MOD_dump_cpp_options
at ../../../../../shared/common/src/14_hidewrite/m_cppopts_dumper.F90:80
#4 0x55d3e17bd825 in abinit
at ../../../src/98_main/abinit.F90:253
#5 0x55d3e17c64f1 in main
at ../../../src/98_main/abinit.F90:88
(aiida) max@9b586fa4f7ce:~/tmp$ ll
total
Actually though, thinking about it now @gmatteo is probably right, in that for Docker -march=native
will adopt specs of the machine it was built on (see https://stackoverflow.com/a/54163496/5033292).
So in the case of 21.03.21-abinit
, I just built it on my Mac so it will probably work for other Mac users, but not for e.g. Linux users
I think 20.11.2a
was built on Linux (in Github actions) so the reverse would be true
what OS are you running on @sphuber?
Ubuntu 20.04
ok well I'll have a look at how I can get abinit to build without these flags now
Ok do you want to check marvelnccr/quantum-mobile:24.03.21-abinit
, where this issue should hopefully have been fixed (https://github.com/marvel-nccr/ansible-role-abinit/pull/11)
If so, I will then do another full release. Note, there will a number of changes in the release (let me know if any are an issue):
qe-pw-6.5
rather than qe-pw-3.4.0
Thanks a lot @chrisjsewell . I have good news and bad news: the good news is that with the new QM release I can run the abinit example for Si fast without issues :+1: ! However, there was an unrelated problem that had to be fixed first. When trying to submit I was faced with the following exception:
Traceback (most recent call last):
File "/home/max/.virtualenvs/aiida/bin/aiida-common-workflows", line 11, in <module>
load_entry_point('aiida-common-workflows', 'console_scripts', 'aiida-common-workflows')()
File "/home/max/.virtualenvs/aiida/lib/python3.7/site-packages/click/core.py", line 829, in __call__
return self.main(*args, **kwargs)
File "/home/max/.virtualenvs/aiida/lib/python3.7/site-packages/click/core.py", line 782, in main
rv = self.invoke(ctx)
File "/home/max/.virtualenvs/aiida/lib/python3.7/site-packages/click/core.py", line 1259, in invoke
return _process_result(sub_ctx.command.invoke(sub_ctx))
File "/home/max/.virtualenvs/aiida/lib/python3.7/site-packages/click/core.py", line 1259, in invoke
return _process_result(sub_ctx.command.invoke(sub_ctx))
File "/home/max/.virtualenvs/aiida/lib/python3.7/site-packages/click/core.py", line 1066, in invoke
return ctx.invoke(self.callback, **ctx.params)
File "/home/max/.virtualenvs/aiida/lib/python3.7/site-packages/click/core.py", line 610, in invoke
return callback(*args, **kwargs)
File "/home/max/codes/aiida-common-workflows/aiida_common_workflows/cli/launch.py", line 48, in cmd_relax
process_class = load_workflow_entry_point('relax', plugin)
File "/home/max/codes/aiida-common-workflows/aiida_common_workflows/plugins/entry_point.py", line 42, in load_workflow_entry_point
return entry_point.load_entry_point('aiida.workflows', prefix)
File "/home/max/codes/aiida-core/aiida/plugins/entry_point.py", line 208, in load_entry_point
loaded_entry_point = entry_point.load()
File "/home/max/.virtualenvs/aiida/lib/python3.7/site-packages/reentry/entrypoint.py", line 38, in load
module = import_module(self.module_name)
File "/usr/lib/python3.7/importlib/__init__.py", line 127, in import_module
return _bootstrap._gcd_import(name[level:], package, level)
File "<frozen importlib._bootstrap>", line 1006, in _gcd_import
File "<frozen importlib._bootstrap>", line 983, in _find_and_load
File "<frozen importlib._bootstrap>", line 953, in _find_and_load_unlocked
File "<frozen importlib._bootstrap>", line 219, in _call_with_frames_removed
File "<frozen importlib._bootstrap>", line 1006, in _gcd_import
File "<frozen importlib._bootstrap>", line 983, in _find_and_load
File "<frozen importlib._bootstrap>", line 967, in _find_and_load_unlocked
File "<frozen importlib._bootstrap>", line 677, in _load_unlocked
File "<frozen importlib._bootstrap_external>", line 728, in exec_module
File "<frozen importlib._bootstrap>", line 219, in _call_with_frames_removed
File "/home/max/codes/aiida-common-workflows/aiida_common_workflows/workflows/relax/abinit/__init__.py", line 4, in <module>
from .generator import *
File "/home/max/codes/aiida-common-workflows/aiida_common_workflows/workflows/relax/abinit/generator.py", line 10, in <module>
from pymatgen.core import units
File "/home/max/.virtualenvs/aiida/lib/python3.7/site-packages/pymatgen/__init__.py", line 45, in <module>
from .core.composition import Composition
File "/home/max/.virtualenvs/aiida/lib/python3.7/site-packages/pymatgen/core/__init__.py", line 11, in <module>
from .lattice import Lattice
File "/home/max/.virtualenvs/aiida/lib/python3.7/site-packages/pymatgen/core/lattice.py", line 23, in <module>
from pymatgen.util.coord import pbc_shortest_vectors
File "/home/max/.virtualenvs/aiida/lib/python3.7/site-packages/pymatgen/util/coord.py", line 17, in <module>
from . import coord_cython as cuc
File "coord_cython.pyx", line 1, in init pymatgen.util.coord_cython
ValueError: numpy.ndarray size changed, may indicate binary incompatibility. Expected 88 from C header, got 80 from PyObject
We have seen this before but I never figured out an actual fix that is reproducible. It seems that there is an incompatibility between the numpy
that was installed and the one that was used during the build process of pymatgen
:disappointed: I tried removing and reinstalling the numpy==1.19.5
which was installed, but to no avail. I then tried to install numpy==1.20.1
which solved the problem, however, for this I had to remove aiida-fleur
as dependency from aiida-common-workflows
and reinstall, as aiida-fleur
explicitly specifies numpy<1.20
and so it would fail with a dependency conflict. I think they may have added this because numpy==1.20
removed Python 3.6 support and they wanted to still support it. @Tseplyaev @broeder-j can you confirm this? If that is the case, I don't think this is the way to do this. Simply adding python_requires>=3.6
in your setup will inform pip
that you support Python 3.6 and so it shouldn't install incompatible numpy versions. It would be good if you could remove this explicit limitation.
Then @chrisjsewell , do you have any idea how we can prevent this numpy
problem in QM?
Hi all,
I'm facing the same problem with another package, sisl. https://github.com/zerothi/sisl/issues/310
Still we could not find a solution, but it is related to packages using Cython
. Since numpy 1.20 something changed and seems that installing packages depending on Cython
where an old version of numpy is present leads to problems.
A question: aiida-core still requires old version of numpy https://github.com/aiidateam/aiida-core/blob/a8ee41deb873d1bcac9f3438b6ac854773b9f986/setup.json#L39
Right?
A question: aiida-core still requires old version of numpy
No, this will install anything >=1.17
(but less than 2.0.0)
In the latest requirements/requirements-py-3.8.txt
we test against numpy==1.20.1
and pymatgen==2021.2.8.1
Indeed, although since aiida-core==1.6
now only supports Python >= 3.7, we could actually set numpy~=1.20
because that release dropped support for Python 3.6. Would this make sense to do @chrisjsewell and include that in aiida-core==1.6.1
or is there no point
Sounds possible, although perhaps not according to https://github.com/aiidateam/AEP/tree/master/003_adopt_nep_29; I would defer to @csadorf the official @aiidateam/dependency-manager 😉
@sphuber @chrisjsewell Thanks for pinging me. No, requiring numpy~=1.20
would not be possible at this point as we are committed to supporting numpy 1.19+ until Jun 21, 2022.
I link here the most complete tread I found on the problem reported by @sphuber https://github.com/scikit-learn-contrib/hdbscan/issues/457 I'll read through it later
Will split this discussion of in a separate issue.
More good and bad news: good news, the new QM seems to run Si with Abinit with all three protocols. Great success :+1: ! However, running -S NH3-planar
fails. There is actually quite a bit of output before we are faced with:
At Broyd/MD step 6, gradients are converged :
max grad (force/stress) = 4.4540E-05 < tolmxf= 5.0000E-05 ha/bohr (free atoms)
================================================================================
----iterations are completed or convergence reached----
=== Gap info ===
>>>> For spin 1
Minimum direct gap = 4.6573 [eV], located at k-point : 0.0000 0.0000 0.0000
Fundamental gap = 4.6573 [eV], Top of valence bands at : 0.0000 0.0000 0.0000
Bottom of conduction at : 0.0000 0.0000 0.0000
Mean square residual over all n,k,spin= 95.121E-15; max= 11.415E-13
0.0000 0.0000 0.0000 1 1.14146E-12 kpt; spin; max resid(k); each band:
4.14E-23 4.36E-23 2.39E-23 4.38E-24 1.15E-21 1.90E-21 1.09E-19 7.52E-19
2.34E-20 4.37E-20 2.91E-21 1.14E-12
outwf: writing wavefunctions to: aiidao_WFK with iomode: IO_MODE_MPI
--------------------------------------------------------------------------
mpirun noticed that process rank 1 with PID 2324 on node f63603af2437 exited on signal 6 (Aborted).
--------------------------------------------------------------------------
I will attach the entire input and output file:
abinit_input.txt abinit_output.txt abinit_stderr.txt
Any ideas what could be causing this? It seems again to be related to a compilation error with MPI, but it's weird that the previous fix didn't fix this as well.
EDIT: just confirmed that the same holds for the moderate
protocol
It seems again to be related to a compilation error with MPI,
To confirm, can -S NH3-planar
be successfully run on the VirtualBox image? (or indeed on other installations of abinit)
Any ideas what could be causing this? It seems again to be related to a compilation error with MPI, but it's weird that the previous fix didn't fix this as well.
I cannot reproduce the problem on my mac with mpich-3.3 compiled from source. The backtrace:
Backtrace for this error:
#0 0x1455dc48e2ed in ???
....
#14 0x15479f8c0bf8 in ???
#15 0x55927c5a5c19 in __m_wffile_MOD_wffreadwrite_mpio
at ../../../src/51_manage_mpi/m_wffile.F90:1771
indicates that execution aborts with
** stack smashing detected ***: <unknown> terminated
when we call for the first time the MPI primitive
call MPI_FILE_OPEN(wff%spaceComm_mpiio,wff%fname,MPI_MODE_RDWR,MPI_INFO_NULL,wfftempo,ierr)
to create a file for parallel access.
MPI_FILE_OPEN receives in input scalars and a Fortran string so
I tend to believe that the stack smashing error is triggered while accessing some internal data structure
owned by the MPI library which was most likely compiled with one of the-fstack-protector
options.
See e.g. https://stackoverflow.com/questions/1345670/stack-smashing-detected.
Can you provide additional details on the MPI library used for the docker image? Perhaps we have a similar version in our test farm and we can perform additional tests.
All the details are in the ansible role: https://github.com/marvel-nccr/ansible-role-abinit/blob/master/tasks/main.yml
The role is quite simple, they are all just apt installs.
You can also build the docker from the role, by just cloning the repo and running tox converge
All the details are in the ansible role: https://github.com/marvel-nccr/ansible-role-abinit/blob/master/tasks/main.yml
Thanks for the link.
The problem is that we are installing a precompiled MPI library so we cannot disable the stack protector hence Abinit will continue to fail when creating the file in MPI-IO mode.
Furthermore, I've noticed the following warning in the log file:
--- !WARNING
src_file: m_nctk.F90
src_line: 564
message: |
Netcdf lib does not support MPI-IO and: NetCDF: Parallel operation on file opened for non-parallel access
...
Asked to delete not existent file: __TMP_FILE__
--- !WARNING
src_file: m_nctk.F90
src_line: 584
message: |
The netcdf library does not support parallel IO, see message above
Abinit won't be able to produce files in parallel e.g. when paral_kgb==1 is used.
Action: install a netcdf4+HDF5 library with MPI-IO support.
...
This clearly indicates that there's some problem in the MPI-IO layer since Netcdf4 relies on MPI-IO to perform parallel IO.
In a nutshell, the Abinit build system has detected a netcdf4 lib that in principle supports MPI-IO (at configure time, we just try to link a fortran program that uses the netcdf4 API for parallel-IO and if the linker is happy we "define" the CPP macro HAVE_NETCDF_FORTRAN_MPI). Unfortunately, the fact that the linker can find the symbols in the libs does not imply that the code will run as expected. The above error message means that the netcdf4 library returned a non-zero exit status when trying to create a netcdf file in parallel mode. This seems to corroborate my idea that there's something fishy in the MPI-IO part provided by the precompiled mpi-library.
The netcdf issue was already noted above: https://github.com/aiidateam/aiida-common-workflows/issues/159#issuecomment-803901622 and I opened a PR: https://github.com/marvel-nccr/ansible-role-abinit/pull/13. However, abinit still does not pick up the correct netcdf library, so perhaps there is additional configuration required?
I am running
cfe9ba69d87629fb89b39c0b86dd4e9233d3a6fe
of this repo withaiida-abinit==0.2.0a1
on Quantum Mobile. A simple relax workchain has theAbinitCalculation
fail with a 304, for all protocols. The stdout contains: