Open UnixJunkie opened 1 year ago
From the code (torchani/data/init.py), I suspect this: CHNOSFCl
From the paper, also CHNOSFCl.
Hi, it is [H,C,N,O,S,F,Cl]
, defined at https://github.com/aiqm/ani-model-zoo/blob/master/resources/ani-2x_8x/rHCNOSFCl-5.1R_16-3.5A_a8-4.params#L14
or from code
>>> import torchani
>>> model = torchani.models.ANI2x()
>>> model
BuiltinModel(
(aev_computer): AEVComputer(
(angular_terms): StandardAngular(
(cutoff_fn): CutoffCosine()
)
(radial_terms): StandardRadial(
(cutoff_fn): CutoffCosine()
)
(neighborlist): FullPairwise()
)
(neural_networks): Ensemble(
(0): ANIModel(
(H): Sequential(
(0): Linear(in_features=1008, out_features=256, bias=True)
(1): CELU(alpha=0.1)
(2): Linear(in_features=256, out_features=192, bias=True)
(3): CELU(alpha=0.1)
(4): Linear(in_features=192, out_features=160, bias=True)
(5): CELU(alpha=0.1)
(6): Linear(in_features=160, out_features=1, bias=True)
)
(C): Sequential(
(0): Linear(in_features=1008, out_features=224, bias=True)
(1): CELU(alpha=0.1)
(2): Linear(in_features=224, out_features=192, bias=True)
(3): CELU(alpha=0.1)
(4): Linear(in_features=192, out_features=160, bias=True)
(5): CELU(alpha=0.1)
(6): Linear(in_features=160, out_features=1, bias=True)
)
(N): Sequential(
(0): Linear(in_features=1008, out_features=192, bias=True)
(1): CELU(alpha=0.1)
(2): Linear(in_features=192, out_features=160, bias=True)
(3): CELU(alpha=0.1)
(4): Linear(in_features=160, out_features=128, bias=True)
(5): CELU(alpha=0.1)
(6): Linear(in_features=128, out_features=1, bias=True)
)
(O): Sequential(
(0): Linear(in_features=1008, out_features=192, bias=True)
(1): CELU(alpha=0.1)
(2): Linear(in_features=192, out_features=160, bias=True)
(3): CELU(alpha=0.1)
(4): Linear(in_features=160, out_features=128, bias=True)
(5): CELU(alpha=0.1)
(6): Linear(in_features=128, out_features=1, bias=True)
)
(S): Sequential(
(0): Linear(in_features=1008, out_features=160, bias=True)
(1): CELU(alpha=0.1)
(2): Linear(in_features=160, out_features=128, bias=True)
(3): CELU(alpha=0.1)
(4): Linear(in_features=128, out_features=96, bias=True)
(5): CELU(alpha=0.1)
(6): Linear(in_features=96, out_features=1, bias=True)
)
(F): Sequential(
(0): Linear(in_features=1008, out_features=160, bias=True)
(1): CELU(alpha=0.1)
(2): Linear(in_features=160, out_features=128, bias=True)
(3): CELU(alpha=0.1)
(4): Linear(in_features=128, out_features=96, bias=True)
(5): CELU(alpha=0.1)
(6): Linear(in_features=96, out_features=1, bias=True)
)
(Cl): Sequential(
(0): Linear(in_features=1008, out_features=160, bias=True)
(1): CELU(alpha=0.1)
(2): Linear(in_features=160, out_features=128, bias=True)
(3): CELU(alpha=0.1)
(4): Linear(in_features=128, out_features=96, bias=True)
(5): CELU(alpha=0.1)
(6): Linear(in_features=96, out_features=1, bias=True)
)
)
Thanks, I was right then. This is a key thing; it should be clearly stated in the documentation too.
Or, I did not find it?
I'll have a look in the scientific article then.