Open happyme531 opened 2 days ago
RKNN-Toolkit2版本: 2.3.0
模型: https://huggingface.co/SmilingWolf/wd-convnext-tagger-v3/tree/main
转换脚本:
#!/usr/bin/env python # coding: utf-8 import datetime from rknn.api import RKNN from sys import exit ONNX_MODEL="model.onnx" RKNN_MODEL=ONNX_MODEL.replace(".onnx",".rknn") DATASET="/home/zt/rk3588-nn/rknn_model_zoo/datasets/COCO/coco_subset_20.txt" QUANTIZE=False detailed_performance_log = True timedate_iso = datetime.datetime.now().isoformat() rknn = RKNN(verbose=True) rknn.config( # mean_values=[x * 255 for x in [0.485, 0.456, 0.406]], # std_values=[x * 255 for x in [0.229, 0.224, 0.225]], quantized_dtype='w8a8', quantized_algorithm='normal', quantized_method='channel', quantized_hybrid_level=0, target_platform='rk3588', quant_img_RGB2BGR = False, float_dtype='float16', optimization_level=3, custom_string=f"converted at {timedate_iso}", remove_weight=False, compress_weight=False, inputs_yuv_fmt=None, single_core_mode=False, dynamic_input=None, model_pruning=False, op_target=None, quantize_weight=False, remove_reshape=False, sparse_infer=False, enable_flash_attention=False, ) ret = rknn.load_onnx(model=ONNX_MODEL, inputs=["input"], input_size_list=[[1,448,448,3]]) ret = rknn.build(do_quantization=QUANTIZE, dataset=DATASET, rknn_batch_size=None) ret = rknn.export_rknn(RKNN_MODEL) # ret = rknn.init_runtime(target='rk3588',device_id='cbb956772bf5dac9',core_mask=RKNN.NPU_CORE_0,perf_debug=detailed_performance_log) # rknn.eval_perf() ret = rknn.accuracy_analysis(inputs=['img.npy'], target='rk3588')
NPU运行代码:
import os import sys import cv2 import numpy as np import pandas as pd from rknnlite.api import RKNNLite pd.set_option("display.max_rows", 1000) dim = 448 thresh = 0.4 # 初始化RKNNLite rknn_lite = RKNNLite(verbose=False) # 加载RKNN模型 ret = rknn_lite.load_rknn("model.rknn") if ret != 0: print('加载RKNN模型失败') exit(ret) # 初始化运行时环境 ret = rknn_lite.init_runtime() if ret != 0: print('初始化运行时环境失败') exit(ret) label_names = pd.read_csv("selected_tags.csv") target_img = "input.jpg" if len(sys.argv) < 2 else sys.argv[1] try: # 图像预处理 # 1. 读取图像并转RGB img = cv2.imread(target_img) if img is None: print(f"无法读取图像: {target_img}") exit(1) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # 2. 处理透明通道 if img.shape[2] == 4: # RGBA图像 img = img[:, :, :3] # 只保留RGB通道 elif len(img.shape) == 2: # 灰度图 img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB) # 3. 填充为正方形 h, w = img.shape[:2] if h > w: diff = h - w pad_left = diff // 2 pad_right = diff - pad_left img = cv2.copyMakeBorder(img, 0, 0, pad_left, pad_right, cv2.BORDER_CONSTANT, value=(255, 255, 255)) elif w > h: diff = w - h pad_top = diff // 2 pad_bottom = diff - pad_top img = cv2.copyMakeBorder(img, pad_top, pad_bottom, 0, 0, cv2.BORDER_CONSTANT, value=(255, 255, 255)) # 4. resize到目标尺寸 img = cv2.resize(img, (dim, dim), interpolation=cv2.INTER_AREA) # 5. 转换为float32并添加batch维度 img = img.astype(np.float32) img = np.expand_dims(img, 0) print(img.shape) # 执行推理 np.save("img.npy",img) outputs = rknn_lite.inference(inputs=[img], data_format="nhwc") probs = outputs[0] # 获取第一个输出 print(probs.shape) # 后处理 label_names["probs"] = probs[0] found_tags = label_names[label_names["probs"] > thresh][["tag_id", "name", "probs"]] print(found_tags) finally: # 释放资源 rknn_lite.release()
CPU运行代码:
import os import sys import cv2 import numpy as np import pandas as pd import onnxruntime as ort pd.set_option("display.max_rows", 1000) dim = 448 thresh = 0.4 # 加载模型 session = ort.InferenceSession("model.onnx") label_names = pd.read_csv("selected_tags.csv") target_img = "input.jpg" if len(sys.argv) < 2 else sys.argv[1] try: # 图像预处理 # 1. 读取图像并转RGB img = cv2.imread(target_img) if img is None: print(f"无法读取图像: {target_img}") exit(1) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # 2. 处理透明通道 if img.shape[2] == 4: # RGBA图像 img = img[:, :, :3] # 只保留RGB通道 elif len(img.shape) == 2: # 灰度图 img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB) # 3. 填充为正方形 h, w = img.shape[:2] if h > w: diff = h - w pad_left = diff // 2 pad_right = diff - pad_left img = cv2.copyMakeBorder(img, 0, 0, pad_left, pad_right, cv2.BORDER_CONSTANT, value=(255, 255, 255)) elif w > h: diff = w - h pad_top = diff // 2 pad_bottom = diff - pad_top img = cv2.copyMakeBorder(img, pad_top, pad_bottom, 0, 0, cv2.BORDER_CONSTANT, value=(255, 255, 255)) # 4. resize到目标尺寸 img = cv2.resize(img, (dim, dim), interpolation=cv2.INTER_AREA) # 5. 转换为float32并添加batch维度 img = img.astype(np.float32) img = np.expand_dims(img, 0) print(img.shape) # 执行推理 input_name = session.get_inputs()[0].name label_name = session.get_outputs()[0].name probs = session.run([label_name], {input_name: img})[0] print(probs.shape) # 后处理 label_names["probs"] = probs[0] found_tags = label_names[label_names["probs"] > thresh][["tag_id", "name", "probs"]] print(found_tags) finally: # 释放资源 pass
输入图片:
ONNX推理结果(正确):
tag_id name probs 0 9999999 general 0.538390 1 9999998 sensitive 0.484545 5 212816 solo 0.932813 11 11906 open_mouth 0.405107 12 15080 short_hair 0.527191 22 383159 long_sleeves 0.523863 25 540830 1boy 0.945991 40 16613 jewelry 0.558022 47 15675 standing 0.452569 72 1300281 male_focus 0.913289 130 10926 pants 0.834378 230 3477 sweater 0.402990 346 1094664 colored_skin 0.603011 373 4009 turtleneck 0.544890 1532 1314823 black_sweater 0.499709
RKNN推理结果(错误):
tag_id name probs 1 9999998 sensitive 0.518066 4 470575 1girl 0.444580 5 212816 solo 0.435547 6 13197 long_hair 0.740723 19 566835 multiple_girls 0.547852 38 1821 2girls 0.459961 44 1709 twintails 0.514160 65 11429 pink_hair 0.695801 337 2508 blood 0.424316 1403 720637 chromatic_aberration 0.526855 8110 385430 hatsune_miku 0.790039
精度分析结果:
# simulator_error: calculate the output error of each layer of the simulator (compared to the 'golden' value). # entire: output error of each layer between 'golden' and 'simulator', these errors will accumulate layer by layer. # single: single-layer output error between 'golden' and 'simulator', can better reflect the single-layer accuracy of the simulator. # runtime_error: calculate the output error of each layer of the runtime. # entire: output error of each layer between 'golden' and 'runtime', these errors will accumulate layer by layer. # single_sim: single-layer output error between 'simulator' and 'runtime', can better reflect the single-layer accuracy of runtime. layer_name simulator_error runtime_error entire single entire single_sim cos euc cos euc cos euc cos euc ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- [Input] input 1.00000 | 0.0 1.00000 | 0.0 1.00000 | 0.0 1.00000 | 0.0 [BatchNormalization] /Div_output_0_sw 1.00000 | 0.0520 1.00000 | 0.0520 1.00000 | 0.0536 1.00000 | 0.0376 [Transpose] /Sub_output_0 1.00000 | 0.0520 1.00000 | 0.0520 1.00000 | 0.0536 1.00000 | 0.0 [Conv] /core_model/stem/stem.0/Conv_output_0 1.00000 | 0.4337 1.00000 | 0.4337 1.00000 | 0.4339 1.00000 | 0.0022 [exNorm] /core_model/stem/stem.1/Transpose_output_0_tp_rs_sw 1.00000 | 0.2652 1.00000 | 0.1549 1.00000 | 0.7212 1.00000 | 0.6860 [Conv] /core_model/stages/stages.0/blocks/blocks.0/conv_dw/Conv_output_0 1.00000 | 0.1781 1.00000 | 0.0713 1.00000 | 0.3850 1.00000 | 0.0008 [exNorm] /core_model/stages/stages.0/blocks/blocks.0/Transpose_output_0_tp_rs_sw 0.99999 | 8.7693 1.00000 | 0.6680 0.99997 | 15.510 1.00000 | 2.0370 [Conv] /core_model/stages/stages.0/blocks/blocks.0/norm/LayerNormalization_output_0_tp_rs_sw 1.00000 | 26.967 1.00000 | 2.6462 [exGelu] /core_model/stages/stages.0/blocks/blocks.0/mlp/fc1/MatMul_output_0_sw_sw 0.99999 | 10.242 1.00000 | 0.8090 0.99997 | 26.137 1.00000 | 5.7634 [Conv] /core_model/stages/stages.0/blocks/blocks.0/Mul 1.00000 | 5.8694 1.00000 | 1.2471 [Add] /core_model/stages/stages.0/blocks/blocks.0/Add_tp 1.00000 | 6.0621 1.00000 | 1.6632 1.00000 | 15.546 1.00000 | 1.5519 [Conv] /core_model/stages/stages.0/blocks/blocks.1/conv_dw/Conv_output_0 1.00000 | 4.3364 1.00000 | 0.8735 0.99999 | 9.4880 1.00000 | 0.0104 [exNorm] /core_model/stages/stages.0/blocks/blocks.1/Transpose_output_0_tp_rs_sw 1.00000 | 2.0800 1.00000 | 0.3138 0.99999 | 3.7449 1.00000 | 0.7789 [Conv] /core_model/stages/stages.0/blocks/blocks.1/norm/LayerNormalization_output_0_tp_rs_sw 1.00000 | 8.2362 1.00000 | 1.5194 [exGelu] /core_model/stages/stages.0/blocks/blocks.1/mlp/fc1/MatMul_output_0_sw_sw 0.99999 | 1.6299 1.00000 | 0.1053 0.99992 | 4.2616 0.99995 | 3.1520 [Conv] /core_model/stages/stages.0/blocks/blocks.1/Mul 1.00000 | 13.150 1.00000 | 3.2147 [Add] /core_model/stages/stages.0/blocks/blocks.1/Add_tp 1.00000 | 15.498 1.00000 | 4.7431 0.99999 | 97.716 1.00000 | 3.8536 [Conv] /core_model/stages/stages.0/blocks/blocks.2/conv_dw/Conv_output_0 1.00000 | 5.3657 1.00000 | 0.7520 0.99985 | 31.952 1.00000 | 0.0110 [exNorm] /core_model/stages/stages.0/blocks/blocks.2/Transpose_output_0_tp_rs_sw 0.99999 | 2.8247 1.00000 | 0.2477 0.99977 | 14.736 1.00000 | 0.6807 [Conv] /core_model/stages/stages.0/blocks/blocks.2/norm/LayerNormalization_output_0_tp_rs_sw 1.00000 | 9.1141 1.00000 | 1.1492 [exGelu] /core_model/stages/stages.0/blocks/blocks.2/mlp/fc1/MatMul_output_0_sw_sw 0.99998 | 2.4339 1.00000 | 0.1316 0.99952 | 13.106 0.99999 | 2.2258 [Conv] /core_model/stages/stages.0/blocks/blocks.2/Mul 1.00000 | 34.713 1.00000 | 3.6944 [Add] /core_model/stages/stages.0/blocks/blocks.2/Add 1.00000 | 37.332 1.00000 | 7.3145 0.99996 | 265.54 1.00000 | 11.449 [exNorm] /core_model/stages/stages.0/blocks/blocks.2/Add_tp_rs_sw 0.99999 | 0.8700 1.00000 | 0.0715 0.99970 | 4.3177 1.00000 | 0.2157 [Conv] /core_model/stages/stages.1/downsample/downsample.1/Conv_output_0 0.99999 | 2.7481 1.00000 | 0.2071 0.99985 | 13.890 1.00000 | 0.0075 [Conv] /core_model/stages/stages.1/blocks/blocks.0/conv_dw/Conv_output_0 0.99999 | 1.6479 1.00000 | 0.1787 0.99985 | 9.2222 1.00000 | 0.0039 [exNorm] /core_model/stages/stages.1/blocks/blocks.0/Transpose_output_0_tp_rs_sw 0.99999 | 1.1727 1.00000 | 0.1207 0.99984 | 5.6794 1.00000 | 0.3214 [Conv] /core_model/stages/stages.1/blocks/blocks.0/norm/LayerNormalization_output_0_tp_rs_sw 1.00000 | 5.6439 1.00000 | 0.7624 [exGelu] /core_model/stages/stages.1/blocks/blocks.0/mlp/fc1/MatMul_output_0_sw_sw 0.99999 | 1.4437 1.00000 | 0.0936 0.99973 | 6.9007 0.99998 | 1.6650 [Conv] /core_model/stages/stages.1/blocks/blocks.0/Mul 1.00000 | 6.6549 1.00000 | 2.0843 [Add] /core_model/stages/stages.1/blocks/blocks.0/Add_output_0_tp_tp 1.00000 | 7.6756 1.00000 | 2.8409 0.99999 | 76.236 1.00000 | 3.7374 [Conv] /core_model/stages/stages.1/blocks/blocks.1/conv_dw/Conv_output_0 0.99999 | 6.9869 1.00000 | 0.6112 0.99982 | 39.508 1.00000 | 0.0122 [exNorm] /core_model/stages/stages.1/blocks/blocks.1/Transpose_output_0_tp_rs_sw 0.99999 | 1.3834 1.00000 | 0.1432 0.99987 | 6.8398 1.00000 | 0.3849 [Conv] /core_model/stages/stages.1/blocks/blocks.1/norm/LayerNormalization_output_0_tp_rs_sw 1.00000 | 7.2545 1.00000 | 0.9486 [exGelu] /core_model/stages/stages.1/blocks/blocks.1/mlp/fc1/MatMul_output_0_sw_sw 0.99998 | 1.5757 1.00000 | 0.0924 0.99961 | 7.9394 0.99998 | 1.9830 [Conv] /core_model/stages/stages.1/blocks/blocks.1/Mul 1.00000 | 15.006 1.00000 | 1.9839 [Add] /core_model/stages/stages.1/blocks/blocks.1/Add_output_0_tp_tp 1.00000 | 16.957 1.00000 | 5.5882 0.99999 | 85.386 1.00000 | 6.4523 [Conv] /core_model/stages/stages.1/blocks/blocks.2/conv_dw/Conv_output_0 0.99999 | 9.6383 1.00000 | 2.5898 0.99982 | 50.067 1.00000 | 0.0136 [exNorm] /core_model/stages/stages.1/blocks/blocks.2/Transpose_output_0_tp_rs_sw 0.99999 | 1.5785 1.00000 | 0.1567 0.99985 | 8.0117 1.00000 | 0.4384 [Conv] /core_model/stages/stages.1/blocks/blocks.2/norm/LayerNormalization_output_0_tp_rs_sw 1.00000 | 8.2731 1.00000 | 1.1041 [exGelu] /core_model/stages/stages.1/blocks/blocks.2/mlp/fc1/MatMul_output_0_sw_sw 0.99998 | 1.8875 1.00000 | 0.1062 0.99958 | 9.5626 0.99998 | 2.1530 [Conv] /core_model/stages/stages.1/blocks/blocks.2/Mul 1.00000 | 50.664 1.00000 | 6.3097 [Add] /core_model/stages/stages.1/blocks/blocks.2/Add_output_0 1.00000 | 57.117 1.00000 | 12.456 0.99998 | 371.59 1.00000 | 11.375 [exNorm] /core_model/stages/stages.1/blocks/blocks.2/Add_output_0_tp_rs_sw 0.99999 | 0.0565 1.00000 | 0.0050 0.99974 | 0.2851 1.00000 | 0.0147 [Conv] /core_model/stages/stages.2/downsample/downsample.1/Conv_output_0 0.99999 | 0.2799 1.00000 | 0.0221 0.99987 | 1.5164 1.00000 | 0.0009 [Conv] /core_model/stages/stages.2/blocks/blocks.0/conv_dw/Conv_output_0 1.00000 | 0.2692 1.00000 | 0.0388 0.99994 | 1.6870 1.00000 | 0.0007 [exNorm] /core_model/stages/stages.2/blocks/blocks.0/Transpose_output_0_tp_rs_sw 1.00000 | 0.4613 1.00000 | 0.0797 0.99993 | 2.3538 1.00000 | 0.2400 [Conv] /core_model/stages/stages.2/blocks/blocks.0/norm/LayerNormalization_output_0_tp_rs_sw 1.00000 | 3.2392 1.00000 | 0.5924 [exGelu] /core_model/stages/stages.2/blocks/blocks.0/mlp/fc1/MatMul_output_0_sw_sw 0.99999 | 0.8842 1.00000 | 0.0693 0.99977 | 4.8253 0.99999 | 1.0671 [Conv] /core_model/stages/stages.2/blocks/blocks.0/Mul 1.00000 | 0.2157 1.00000 | 0.0226 [Add] /core_model/stages/stages.2/blocks/blocks.0/Add_output_0_tp_tp 1.00000 | 0.3688 1.00000 | 0.0374 0.99990 | 1.9785 1.00000 | 0.0385 [Conv] /core_model/stages/stages.2/blocks/blocks.1/conv_dw/Conv_output_0 1.00000 | 0.4518 1.00000 | 0.0458 0.99990 | 2.3457 1.00000 | 0.0010 [exNorm] /core_model/stages/stages.2/blocks/blocks.1/Transpose_output_0_tp_rs_sw 1.00000 | 0.4876 1.00000 | 0.0757 0.99992 | 2.5248 1.00000 | 0.2189 [Conv] /core_model/stages/stages.2/blocks/blocks.1/norm/LayerNormalization_output_0_tp_rs_sw 1.00000 | 3.4631 1.00000 | 0.7081 [exGelu] /core_model/stages/stages.2/blocks/blocks.1/mlp/fc1/MatMul_output_0_sw_sw 0.99999 | 0.8244 1.00000 | 0.0616 0.99974 | 4.3593 0.99998 | 1.3470 [Conv] /core_model/stages/stages.2/blocks/blocks.1/Mul 0.99999 | 0.2148 1.00000 | 0.0179 [Add] /core_model/stages/stages.2/blocks/blocks.1/Add_output_0_tp_tp 1.00000 | 0.4318 1.00000 | 0.0482 0.99991 | 2.3433 1.00000 | 0.0416 [Conv] /core_model/stages/stages.2/blocks/blocks.2/conv_dw/Conv_output_0 1.00000 | 0.3404 1.00000 | 0.0467 0.99994 | 1.8587 1.00000 | 0.0005 [exNorm] /core_model/stages/stages.2/blocks/blocks.2/Transpose_output_0_tp_rs_sw 1.00000 | 0.5217 1.00000 | 0.0643 0.99990 | 2.6697 1.00000 | 0.2002 [Conv] /core_model/stages/stages.2/blocks/blocks.2/norm/LayerNormalization_output_0_tp_rs_sw 1.00000 | 3.6632 1.00000 | 0.5986 [exGelu] /core_model/stages/stages.2/blocks/blocks.2/mlp/fc1/MatMul_output_0_sw_sw 0.99999 | 0.9429 1.00000 | 0.0682 0.99974 | 4.9279 0.99998 | 1.2612 [Conv] /core_model/stages/stages.2/blocks/blocks.2/Mul 0.99999 | 0.3791 1.00000 | 0.0309 [Add] /core_model/stages/stages.2/blocks/blocks.2/Add_output_0_tp_tp 1.00000 | 0.5892 1.00000 | 0.0684 0.99991 | 3.1163 1.00000 | 0.0671 [Conv] /core_model/stages/stages.2/blocks/blocks.3/conv_dw/Conv_output_0 1.00000 | 0.6233 1.00000 | 0.0957 0.99995 | 3.7812 1.00000 | 0.0016 [exNorm] /core_model/stages/stages.2/blocks/blocks.3/Transpose_output_0_tp_rs_sw 1.00000 | 0.4507 1.00000 | 0.0628 0.99989 | 2.4686 1.00000 | 0.1678 [Conv] /core_model/stages/stages.2/blocks/blocks.3/norm/LayerNormalization_output_0_tp_rs_sw 1.00000 | 3.3606 1.00000 | 0.5857 [exGelu] /core_model/stages/stages.2/blocks/blocks.3/mlp/fc1/MatMul_output_0_sw_sw 0.99999 | 0.8769 1.00000 | 0.0674 0.99974 | 4.8338 0.99998 | 1.3066 [Conv] /core_model/stages/stages.2/blocks/blocks.3/Mul 0.99999 | 0.5393 1.00000 | 0.0443 [Add] /core_model/stages/stages.2/blocks/blocks.3/Add_output_0_tp_tp 1.00000 | 0.8402 1.00000 | 0.0915 0.99991 | 4.4720 1.00000 | 0.0875 [Conv] /core_model/stages/stages.2/blocks/blocks.4/conv_dw/Conv_output_0 1.00000 | 0.6862 1.00000 | 0.0912 0.99994 | 4.0351 1.00000 | 0.0015 [exNorm] /core_model/stages/stages.2/blocks/blocks.4/Transpose_output_0_tp_rs_sw 1.00000 | 0.5082 1.00000 | 0.0674 0.99989 | 2.6855 1.00000 | 0.1909 [Conv] /core_model/stages/stages.2/blocks/blocks.4/norm/LayerNormalization_output_0_tp_rs_sw 1.00000 | 3.7791 1.00000 | 0.6579 [exGelu] /core_model/stages/stages.2/blocks/blocks.4/mlp/fc1/MatMul_output_0_sw_sw 0.99999 | 1.0072 1.00000 | 0.0678 0.99969 | 5.1696 0.99998 | 1.4190 [Conv] /core_model/stages/stages.2/blocks/blocks.4/Mul 0.99999 | 0.8188 1.00000 | 0.0577 [Add] /core_model/stages/stages.2/blocks/blocks.4/Add_output_0_tp_tp 1.00000 | 1.2235 1.00000 | 0.1188 0.99989 | 6.3236 1.00000 | 0.1074 [Conv] /core_model/stages/stages.2/blocks/blocks.5/conv_dw/Conv_output_0 1.00000 | 0.9030 1.00000 | 0.1252 0.99994 | 5.2962 1.00000 | 0.0017 [exNorm] /core_model/stages/stages.2/blocks/blocks.5/Transpose_output_0_tp_rs_sw 1.00000 | 0.5777 1.00000 | 0.0730 0.99991 | 3.0166 1.00000 | 0.2249 [Conv] /core_model/stages/stages.2/blocks/blocks.5/norm/LayerNormalization_output_0_tp_rs_sw 1.00000 | 4.4417 1.00000 | 0.8116 [exGelu] /core_model/stages/stages.2/blocks/blocks.5/mlp/fc1/MatMul_output_0_sw_sw 0.99999 | 1.0031 1.00000 | 0.0663 0.99967 | 5.2905 0.99997 | 1.6362 [Conv] /core_model/stages/stages.2/blocks/blocks.5/Mul 0.99999 | 1.2782 1.00000 | 0.0937 [Add] /core_model/stages/stages.2/blocks/blocks.5/Add_output_0_tp_tp 0.99999 | 1.8889 1.00000 | 0.1682 0.99986 | 9.9420 1.00000 | 0.1609 [Conv] /core_model/stages/stages.2/blocks/blocks.6/conv_dw/Conv_output_0 1.00000 | 1.3570 1.00000 | 0.1637 0.99992 | 7.8443 1.00000 | 0.0083 [exNorm] /core_model/stages/stages.2/blocks/blocks.6/Transpose_output_0_tp_rs_sw 1.00000 | 0.6362 1.00000 | 0.0864 0.99991 | 3.3521 1.00000 | 0.2395 [Conv] /core_model/stages/stages.2/blocks/blocks.6/norm/LayerNormalization_output_0_tp_rs_sw 1.00000 | 4.8108 1.00000 | 0.8959 [exGelu] /core_model/stages/stages.2/blocks/blocks.6/mlp/fc1/MatMul_output_0_sw_sw 0.99999 | 1.0179 1.00000 | 0.0621 0.99958 | 5.4758 0.99996 | 1.7060 [Conv] /core_model/stages/stages.2/blocks/blocks.6/Mul 0.99999 | 1.6284 1.00000 | 0.1057 [Add] /core_model/stages/stages.2/blocks/blocks.6/Add_output_0_tp_tp 0.99999 | 2.6560 1.00000 | 0.2178 0.99983 | 13.954 1.00000 | 0.1870 [Conv] /core_model/stages/stages.2/blocks/blocks.7/conv_dw/Conv_output_0 1.00000 | 2.6708 1.00000 | 0.2898 0.99990 | 16.431 1.00000 | 0.0039 [exNorm] /core_model/stages/stages.2/blocks/blocks.7/Transpose_output_0_tp_rs_sw 1.00000 | 0.6435 1.00000 | 0.0796 0.99989 | 3.5828 1.00000 | 0.2167 [Conv] /core_model/stages/stages.2/blocks/blocks.7/norm/LayerNormalization_output_0_tp_rs_sw 1.00000 | 4.8424 1.00000 | 0.9562 [exGelu] /core_model/stages/stages.2/blocks/blocks.7/mlp/fc1/MatMul_output_0_sw_sw 0.99999 | 0.9794 1.00000 | 0.0594 0.99958 | 5.3082 0.99995 | 1.7802 [Conv] /core_model/stages/stages.2/blocks/blocks.7/Mul 0.99999 | 1.6477 1.00000 | 0.1123 [Add] /core_model/stages/stages.2/blocks/blocks.7/Add_output_0_tp_tp 0.99999 | 3.1878 1.00000 | 0.2573 0.99981 | 17.404 1.00000 | 0.2067 [Conv] /core_model/stages/stages.2/blocks/blocks.8/conv_dw/Conv_output_0 1.00000 | 3.3814 1.00000 | 0.3804 0.99989 | 22.417 1.00000 | 0.0175 [exNorm] /core_model/stages/stages.2/blocks/blocks.8/Transpose_output_0_tp_rs_sw 1.00000 | 0.6081 1.00000 | 0.0794 0.99987 | 3.6687 1.00000 | 0.1942 [Conv] /core_model/stages/stages.2/blocks/blocks.8/norm/LayerNormalization_output_0_tp_rs_sw 1.00000 | 4.6344 1.00000 | 0.9102 [exGelu] /core_model/stages/stages.2/blocks/blocks.8/mlp/fc1/MatMul_output_0_sw_sw 0.99999 | 1.0736 1.00000 | 0.0658 0.99953 | 6.2395 0.99996 | 1.7144 [Conv] /core_model/stages/stages.2/blocks/blocks.8/Mul 0.99999 | 1.9659 1.00000 | 0.1339 [Add] /core_model/stages/stages.2/blocks/blocks.8/Add_output_0_tp_tp 0.99999 | 3.8854 1.00000 | 0.3079 0.99980 | 21.835 1.00000 | 0.2582 [Conv] /core_model/stages/stages.2/blocks/blocks.9/conv_dw/Conv_output_0 1.00000 | 3.0943 1.00000 | 0.3607 0.99989 | 19.920 1.00000 | 0.0193 [exNorm] /core_model/stages/stages.2/blocks/blocks.9/Transpose_output_0_tp_rs_sw 1.00000 | 0.7018 1.00000 | 0.0905 0.99986 | 4.2144 1.00000 | 0.2403 [Conv] /core_model/stages/stages.2/blocks/blocks.9/norm/LayerNormalization_output_0_tp_rs_sw 1.00000 | 5.1151 1.00000 | 0.9788 [exGelu] /core_model/stages/stages.2/blocks/blocks.9/mlp/fc1/MatMul_output_0_sw_sw 0.99998 | 1.0199 1.00000 | 0.0555 0.99944 | 5.7620 0.99994 | 1.8168 [Conv] /core_model/stages/stages.2/blocks/blocks.9/Mul 0.99998 | 2.6935 1.00000 | 0.1629 [Add] /core_model/stages/stages.2/blocks/blocks.9/Add_output_0_tp_tp 0.99999 | 5.0023 1.00000 | 0.3772 0.99977 | 28.179 1.00000 | 0.3101 [Conv] /core_model/stages/stages.2/blocks/blocks.10/conv_dw/Conv_output_0 1.00000 | 8.7919 1.00000 | 0.7930 0.99985 | 55.061 1.00000 | 0.0208 [exNorm] /core_model/stages/stages.2/blocks/blocks.10/Transpose_output_0_tp_rs_sw 1.00000 | 0.5855 1.00000 | 0.0824 0.99988 | 3.8776 1.00000 | 0.2273 [Conv] /core_model/stages/stages.2/blocks/blocks.10/norm/LayerNormalization_output_0_tp_rs_sw 1.00000 | 4.3600 1.00000 | 0.9054 [exGelu] /core_model/stages/stages.2/blocks/blocks.10/mlp/fc1/MatMul_output_0_sw_sw 0.99999 | 0.9389 1.00000 | 0.0630 0.99945 | 6.3456 0.99996 | 1.6959 [Conv] /core_model/stages/stages.2/blocks/blocks.10/Mul 0.99999 | 2.0694 1.00000 | 0.1503 [Add] /core_model/stages/stages.2/blocks/blocks.10/Add_output_0_tp_tp 0.99999 | 5.4775 1.00000 | 0.4259 0.99976 | 31.675 1.00000 | 0.2968 [Conv] /core_model/stages/stages.2/blocks/blocks.11/conv_dw/Conv_output_0 1.00000 | 5.1577 1.00000 | 0.5321 0.99986 | 34.599 1.00000 | 0.0109 [exNorm] /core_model/stages/stages.2/blocks/blocks.11/Transpose_output_0_tp_rs_sw 1.00000 | 0.7717 1.00000 | 0.0947 0.99985 | 4.7655 1.00000 | 0.2408 [Conv] /core_model/stages/stages.2/blocks/blocks.11/norm/LayerNormalization_output_0_tp_rs_sw 1.00000 | 5.8779 1.00000 | 1.2118 [exGelu] /core_model/stages/stages.2/blocks/blocks.11/mlp/fc1/MatMul_output_0_sw_sw 0.99998 | 0.7395 1.00000 | 0.0420 0.99929 | 4.7998 0.99991 | 1.6672 [Conv] /core_model/stages/stages.2/blocks/blocks.11/Mul 0.99999 | 3.1887 1.00000 | 0.2001 [Add] /core_model/stages/stages.2/blocks/blocks.11/Add_output_0_tp_tp 0.99999 | 6.4642 1.00000 | 0.4905 0.99973 | 39.713 1.00000 | 0.3775 [Conv] /core_model/stages/stages.2/blocks/blocks.12/conv_dw/Conv_output_0 1.00000 | 6.2979 1.00000 | 0.7168 0.99986 | 48.280 1.00000 | 0.0260 [exNorm] /core_model/stages/stages.2/blocks/blocks.12/Transpose_output_0_tp_rs_sw 1.00000 | 0.6945 1.00000 | 0.0886 0.99984 | 4.5649 1.00000 | 0.2556 [Conv] /core_model/stages/stages.2/blocks/blocks.12/norm/LayerNormalization_output_0_tp_rs_sw 1.00000 | 5.3192 1.00000 | 1.0274 [exGelu] /core_model/stages/stages.2/blocks/blocks.12/mlp/fc1/MatMul_output_0_sw_sw 0.99998 | 0.9953 1.00000 | 0.0576 0.99935 | 6.4515 0.99995 | 1.7743 [Conv] /core_model/stages/stages.2/blocks/blocks.12/Mul 0.99999 | 4.1482 1.00000 | 0.2756 [Add] /core_model/stages/stages.2/blocks/blocks.12/Add_output_0_tp_tp 0.99999 | 7.9987 1.00000 | 0.6117 0.99971 | 50.162 1.00000 | 0.5109 [Conv] /core_model/stages/stages.2/blocks/blocks.13/conv_dw/Conv_output_0 1.00000 | 7.2780 1.00000 | 0.8903 0.99989 | 55.593 1.00000 | 0.0181 [exNorm] /core_model/stages/stages.2/blocks/blocks.13/Transpose_output_0_tp_rs_sw 1.00000 | 0.7272 1.00000 | 0.0883 0.99982 | 4.5997 1.00000 | 0.2679 [Conv] /core_model/stages/stages.2/blocks/blocks.13/norm/LayerNormalization_output_0_tp_rs_sw 1.00000 | 5.4471 1.00000 | 0.9776 [exGelu] /core_model/stages/stages.2/blocks/blocks.13/mlp/fc1/MatMul_output_0_sw_sw 0.99998 | 1.1115 1.00000 | 0.0594 0.99929 | 6.9709 0.99995 | 1.8141 [Conv] /core_model/stages/stages.2/blocks/blocks.13/Mul 0.99999 | 5.7149 1.00000 | 0.3629 [Add] /core_model/stages/stages.2/blocks/blocks.13/Add_output_0_tp_tp 0.99999 | 10.423 1.00000 | 0.7736 0.99969 | 66.497 1.00000 | 0.6889 [Conv] /core_model/stages/stages.2/blocks/blocks.14/conv_dw/Conv_output_0 1.00000 | 9.4366 1.00000 | 1.3369 0.99992 | 68.933 1.00000 | 0.1296 [exNorm] /core_model/stages/stages.2/blocks/blocks.14/Transpose_output_0_tp_rs_sw 0.99999 | 0.8293 1.00000 | 0.0848 0.99979 | 4.9586 1.00000 | 0.2607 [Conv] /core_model/stages/stages.2/blocks/blocks.14/norm/LayerNormalization_output_0_tp_rs_sw 1.00000 | 6.0089 1.00000 | 0.9250 [exGelu] /core_model/stages/stages.2/blocks/blocks.14/mlp/fc1/MatMul_output_0_sw_sw 0.99997 | 1.5339 1.00000 | 0.0609 0.99913 | 8.2408 0.99996 | 1.7623 [Conv] /core_model/stages/stages.2/blocks/blocks.14/Mul 0.99999 | 8.0104 1.00000 | 0.4646 [Add] /core_model/stages/stages.2/blocks/blocks.14/Add_output_0_tp_tp 0.99999 | 13.925 1.00000 | 0.9812 0.99969 | 85.462 1.00000 | 0.8454 [Conv] /core_model/stages/stages.2/blocks/blocks.15/conv_dw/Conv_output_0 1.00000 | 16.742 1.00000 | 1.7782 0.99987 | 125.06 1.00000 | 0.0242 [exNorm] /core_model/stages/stages.2/blocks/blocks.15/Transpose_output_0_tp_rs_sw 1.00000 | 0.7294 1.00000 | 0.0922 0.99982 | 4.4425 1.00000 | 0.2382 [Conv] /core_model/stages/stages.2/blocks/blocks.15/norm/LayerNormalization_output_0_tp_rs_sw 1.00000 | 5.4620 1.00000 | 0.8868 [exGelu] /core_model/stages/stages.2/blocks/blocks.15/mlp/fc1/MatMul_output_0_sw_sw 0.99998 | 1.3080 1.00000 | 0.0646 0.99930 | 7.3326 0.99995 | 1.8906 [Conv] /core_model/stages/stages.2/blocks/blocks.15/Mul 0.99999 | 8.5323 1.00000 | 0.5060 [Add] /core_model/stages/stages.2/blocks/blocks.15/Add_output_0_tp_tp 0.99999 | 16.900 1.00000 | 1.2867 0.99975 | 104.73 1.00000 | 1.1232 [Conv] /core_model/stages/stages.2/blocks/blocks.16/conv_dw/Conv_output_0 1.00000 | 17.464 1.00000 | 1.7820 0.99985 | 124.10 1.00000 | 0.0376 [exNorm] /core_model/stages/stages.2/blocks/blocks.16/Transpose_output_0_tp_rs_sw 0.99999 | 0.9050 1.00000 | 0.0971 0.99981 | 5.3032 1.00000 | 0.2699 [Conv] /core_model/stages/stages.2/blocks/blocks.16/norm/LayerNormalization_output_0_tp_rs_sw 1.00000 | 6.5533 1.00000 | 1.0245 [exGelu] /core_model/stages/stages.2/blocks/blocks.16/mlp/fc1/MatMul_output_0_sw_sw 0.99997 | 1.1433 1.00000 | 0.0473 0.99896 | 6.4331 0.99990 | 1.9672 [Conv] /core_model/stages/stages.2/blocks/blocks.16/Mul 0.99998 | 9.6403 1.00000 | 0.5067 [Add] /core_model/stages/stages.2/blocks/blocks.16/Add_output_0_tp_tp 0.99999 | 20.782 1.00000 | 1.5976 0.99976 | 131.81 1.00000 | 1.3443 [Conv] /core_model/stages/stages.2/blocks/blocks.17/conv_dw/Conv_output_0 1.00000 | 26.555 1.00000 | 2.4370 0.99982 | 191.69 1.00000 | 0.0619 [exNorm] /core_model/stages/stages.2/blocks/blocks.17/Transpose_output_0_tp_rs_sw 0.99999 | 1.0619 1.00000 | 0.1007 0.99978 | 5.8734 1.00000 | 0.2716 [Conv] /core_model/stages/stages.2/blocks/blocks.17/norm/LayerNormalization_output_0_tp_rs_sw 1.00000 | 8.3130 1.00000 | 1.1316 [exGelu] /core_model/stages/stages.2/blocks/blocks.17/mlp/fc1/MatMul_output_0_sw_sw 0.99998 | 1.1258 1.00000 | 0.0518 0.99913 | 6.7021 0.99994 | 1.8047 [Conv] /core_model/stages/stages.2/blocks/blocks.17/Mul 0.99999 | 9.2450 1.00000 | 0.5250 [Add] /core_model/stages/stages.2/blocks/blocks.17/Add_output_0_tp_tp 0.99999 | 24.116 1.00000 | 1.8857 0.99977 | 154.80 1.00000 | 1.4521 [Conv] /core_model/stages/stages.2/blocks/blocks.18/conv_dw/Conv_output_0 1.00000 | 35.221 1.00000 | 3.1955 0.99977 | 288.18 1.00000 | 0.1117 [exNorm] /core_model/stages/stages.2/blocks/blocks.18/Transpose_output_0_tp_rs_sw 0.99999 | 1.1296 1.00000 | 0.1223 0.99979 | 6.9383 1.00000 | 0.3205 [Conv] /core_model/stages/stages.2/blocks/blocks.18/norm/LayerNormalization_output_0_tp_rs_sw 1.00000 | 8.6446 1.00000 | 1.6140 [exGelu] /core_model/stages/stages.2/blocks/blocks.18/mlp/fc1/MatMul_output_0_sw_sw 0.99997 | 0.2919 1.00000 | 0.0136 0.99751 | 2.5379 0.99955 | 1.0759 [Conv] /core_model/stages/stages.2/blocks/blocks.18/Mul 0.99999 | 5.3299 1.00000 | 0.3148 [Add] /core_model/stages/stages.2/blocks/blocks.18/Add_output_0_tp_tp 0.99999 | 25.106 1.00000 | 2.1030 0.99975 | 191.56 1.00000 | 1.2286 [Conv] /core_model/stages/stages.2/blocks/blocks.19/conv_dw/Conv_output_0 1.00000 | 35.548 1.00000 | 3.3633 0.99976 | 312.59 1.00000 | 0.0670 [exNorm] /core_model/stages/stages.2/blocks/blocks.19/Transpose_output_0_tp_rs_sw 0.99999 | 1.2167 1.00000 | 0.1289 0.99975 | 7.5931 1.00000 | 0.3336 [Conv] /core_model/stages/stages.2/blocks/blocks.19/norm/LayerNormalization_output_0_tp_rs_sw 1.00000 | 9.9176 1.00000 | 1.4606 [exGelu] /core_model/stages/stages.2/blocks/blocks.19/mlp/fc1/MatMul_output_0_sw_sw 0.99998 | 0.8619 1.00000 | 0.0388 0.99856 | 6.9386 0.99995 | 1.2801 [Conv] /core_model/stages/stages.2/blocks/blocks.19/Mul 0.99999 | 9.1184 1.00000 | 0.5657 [Add] /core_model/stages/stages.2/blocks/blocks.19/Add_output_0_tp_tp 0.99999 | 27.806 1.00000 | 2.4645 0.99975 | 210.29 1.00000 | 1.6738 [Conv] /core_model/stages/stages.2/blocks/blocks.20/conv_dw/Conv_output_0 1.00000 | 39.498 1.00000 | 4.2072 0.99980 | 337.58 1.00000 | 0.0586 [exNorm] /core_model/stages/stages.2/blocks/blocks.20/Transpose_output_0_tp_rs_sw 0.99999 | 1.2402 1.00000 | 0.1320 0.99976 | 7.7935 1.00000 | 0.3367 [Conv] /core_model/stages/stages.2/blocks/blocks.20/norm/LayerNormalization_output_0_tp_rs_sw 1.00000 | 11.100 1.00000 | 1.5904 [exGelu] /core_model/stages/stages.2/blocks/blocks.20/mlp/fc1/MatMul_output_0_sw_sw 0.99996 | 0.8821 1.00000 | 0.0327 0.99796 | 6.5160 0.99994 | 1.1170 [Conv] /core_model/stages/stages.2/blocks/blocks.20/Mul 0.99999 | 15.295 1.00000 | 0.8990 [Add] /core_model/stages/stages.2/blocks/blocks.20/Add_output_0_tp_tp 1.00000 | 33.080 1.00000 | 3.0517 0.99980 | 231.84 1.00000 | 2.4472 [Conv] /core_model/stages/stages.2/blocks/blocks.21/conv_dw/Conv_output_0 1.00000 | 43.275 1.00000 | 4.7738 0.99982 | 354.33 1.00000 | 0.1131 [exNorm] /core_model/stages/stages.2/blocks/blocks.21/Transpose_output_0_tp_rs_sw 0.99999 | 1.1445 1.00000 | 0.1154 0.99977 | 6.9322 1.00000 | 0.3022 [Conv] /core_model/stages/stages.2/blocks/blocks.21/norm/LayerNormalization_output_0_tp_rs_sw 1.00000 | 9.9430 1.00000 | 1.3724 [exGelu] /core_model/stages/stages.2/blocks/blocks.21/mlp/fc1/MatMul_output_0_sw_sw 0.99998 | 1.0118 1.00000 | 0.0509 0.99927 | 6.6085 0.99997 | 1.4451 [Conv] /core_model/stages/stages.2/blocks/blocks.21/Mul 1.00000 | 70.174 1.00000 | 10.938 [Add] /core_model/stages/stages.2/blocks/blocks.21/Add_output_0_tp_tp 1.00000 | 80.642 1.00000 | 11.138 0.99996 | 433.11 1.00000 | 13.219 [Conv] /core_model/stages/stages.2/blocks/blocks.22/conv_dw/Conv_output_0 1.00000 | 40.203 1.00000 | 4.1400 0.99980 | 334.79 1.00000 | 0.0673 [exNorm] /core_model/stages/stages.2/blocks/blocks.22/Transpose_output_0_tp_rs_sw 0.99999 | 1.0973 1.00000 | 0.1141 0.99975 | 6.9852 1.00000 | 0.3096 [Conv] /core_model/stages/stages.2/blocks/blocks.22/norm/LayerNormalization_output_0_tp_rs_sw 1.00000 | 9.5003 1.00000 | 1.4080 [exGelu] /core_model/stages/stages.2/blocks/blocks.22/mlp/fc1/MatMul_output_0_sw_sw 0.99998 | 0.9515 1.00000 | 0.0456 0.99927 | 5.9943 0.99996 | 1.4071 [Conv] /core_model/stages/stages.2/blocks/blocks.22/Mul 1.00000 | 76.234 1.00000 | 12.482 [Add] /core_model/stages/stages.2/blocks/blocks.22/Add_output_0_tp_tp 1.00000 | 142.22 1.00000 | 24.626 0.99997 | 821.79 1.00000 | 27.483 [Conv] /core_model/stages/stages.2/blocks/blocks.23/conv_dw/Conv_output_0 1.00000 | 40.943 1.00000 | 4.5496 0.99980 | 297.74 1.00000 | 0.1471 [exNorm] /core_model/stages/stages.2/blocks/blocks.23/Transpose_output_0_tp_rs_sw 0.99999 | 0.9653 1.00000 | 0.1013 0.99975 | 6.0447 1.00000 | 0.2972 [Conv] /core_model/stages/stages.2/blocks/blocks.23/norm/LayerNormalization_output_0_tp_rs_sw 1.00000 | 8.0764 1.00000 | 1.1749 [exGelu] /core_model/stages/stages.2/blocks/blocks.23/mlp/fc1/MatMul_output_0_sw_sw 0.99998 | 1.2145 1.00000 | 0.0520 0.99921 | 7.0187 0.99995 | 1.7389 [Conv] /core_model/stages/stages.2/blocks/blocks.23/Mul 1.00000 | 86.669 1.00000 | 16.266 [Add] /core_model/stages/stages.2/blocks/blocks.23/Add_output_0_tp_tp 1.00000 | 210.87 1.00000 | 35.719 0.99997 | 1124.2 1.00000 | 35.783 [Conv] /core_model/stages/stages.2/blocks/blocks.24/conv_dw/Conv_output_0 1.00000 | 58.969 1.00000 | 6.2639 0.99981 | 394.87 1.00000 | 0.7103 [exNorm] /core_model/stages/stages.2/blocks/blocks.24/Transpose_output_0_tp_rs_sw 0.99999 | 0.8831 1.00000 | 0.0938 0.99977 | 5.7076 1.00000 | 0.2652 [Conv] /core_model/stages/stages.2/blocks/blocks.24/norm/LayerNormalization_output_0_tp_rs_sw 1.00000 | 7.6605 1.00000 | 1.2004 [exGelu] /core_model/stages/stages.2/blocks/blocks.24/mlp/fc1/MatMul_output_0_sw_sw 0.99999 | 1.1554 1.00000 | 0.0605 0.99935 | 7.6976 0.99997 | 1.6360 [Conv] /core_model/stages/stages.2/blocks/blocks.24/Mul 1.00000 | 114.05 1.00000 | 23.232 [Add] /core_model/stages/stages.2/blocks/blocks.24/Add_output_0_tp_tp 1.00000 | 292.12 1.00000 | 60.307 0.99998 | 1715.0 1.00000 | 71.288 [Conv] /core_model/stages/stages.2/blocks/blocks.25/conv_dw/Conv_output_0 1.00000 | 88.267 1.00000 | 10.777 0.99987 | 569.37 1.00000 | 1.0375 [exNorm] /core_model/stages/stages.2/blocks/blocks.25/Transpose_output_0_tp_rs_sw 0.99999 | 1.0343 1.00000 | 0.0916 0.99981 | 5.2693 1.00000 | 0.2724 [Conv] /core_model/stages/stages.2/blocks/blocks.25/norm/LayerNormalization_output_0_tp_rs_sw 1.00000 | 9.5084 1.00000 | 1.2177 [exGelu] /core_model/stages/stages.2/blocks/blocks.25/mlp/fc1/MatMul_output_0_sw_sw 0.99997 | 1.5533 1.00000 | 0.0571 0.99936 | 7.3450 0.99997 | 1.5172 [Conv] /core_model/stages/stages.2/blocks/blocks.25/Mul 1.00000 | 179.44 1.00000 | 23.912 [Add] /core_model/stages/stages.2/blocks/blocks.25/Add_output_0_tp_tp 1.00000 | 407.01 1.00000 | 86.773 0.99997 | 2365.5 1.00000 | 63.555 [Conv] /core_model/stages/stages.2/blocks/blocks.26/conv_dw/Conv_output_0 1.00000 | 139.21 1.00000 | 27.404 0.99994 | 785.43 1.00000 | 1.0042 [exNorm] /core_model/stages/stages.2/blocks/blocks.26/Transpose_output_0_tp_rs_sw 1.00000 | 0.8196 1.00000 | 0.1137 0.99987 | 5.2440 1.00000 | 0.3433 [Conv] /core_model/stages/stages.2/blocks/blocks.26/norm/LayerNormalization_output_0_tp_rs_sw 1.00000 | 6.9916 1.00000 | 1.1787 [exGelu] /core_model/stages/stages.2/blocks/blocks.26/mlp/fc1/MatMul_output_0_sw_sw 0.99999 | 1.2665 1.00000 | 0.0648 0.99940 | 8.2429 0.99998 | 1.6506 [Conv] /core_model/stages/stages.2/blocks/blocks.26/Mul 1.00000 | 158.99 1.00000 | 33.201 [Add] /core_model/stages/stages.2/blocks/blocks.26/Add_output_0 1.00000 | 460.17 1.00000 | 113.40 0.99998 | 2734.2 1.00000 | 112.83 [exNorm] /core_model/stages/stages.2/blocks/blocks.26/Add_output_0_tp_rs_sw 0.99999 | 0.1386 1.00000 | 0.0105 0.99921 | 1.0342 1.00000 | 0.0305 [Conv] /core_model/stages/stages.3/downsample/downsample.1/Conv_output_0 0.99999 | 0.8730 1.00000 | 0.0604 0.99959 | 6.3997 1.00000 | 0.0013 [Conv] /core_model/stages/stages.3/blocks/blocks.0/conv_dw/Conv_output_0 1.00000 | 1.3354 1.00000 | 0.1569 0.99984 | 11.542 1.00000 | 0.0036 [exNorm] /core_model/stages/stages.3/blocks/blocks.0/Transpose_output_0_tp_rs_sw 1.00000 | 0.1808 1.00000 | 0.0689 0.99999 | 1.2067 1.00000 | 0.1993 [Conv] /core_model/stages/stages.3/blocks/blocks.0/norm/LayerNormalization_output_0_tp_rs_sw 1.00000 | 2.2010 1.00000 | 1.4116 [exGelu] /core_model/stages/stages.3/blocks/blocks.0/mlp/fc1/MatMul_output_0_sw_sw 0.99999 | 0.0119 1.00000 | 0.0023 0.99232 | 0.4313 0.99305 | 0.4120 [Conv] /core_model/stages/stages.3/blocks/blocks.0/Mul_output_0 0.99999 | 0.1740 1.00000 | 0.0160 [Add] /core_model/stages/stages.3/blocks/blocks.0/Add_output_0 0.99999 | 0.8897 1.00000 | 0.0663 0.99860 | 11.872 1.00000 | 0.0366 [Conv] /core_model/stages/stages.3/blocks/blocks.1/conv_dw/Conv_output_0 1.00000 | 1.2923 1.00000 | 0.1496 0.99933 | 22.159 1.00000 | 0.0019 [exNorm] /core_model/stages/stages.3/blocks/blocks.1/Transpose_output_0_tp_rs_sw 1.00000 | 0.2367 1.00000 | 0.1103 0.99989 | 4.7703 1.00000 | 0.2830 [Conv] /core_model/stages/stages.3/blocks/blocks.1/norm/LayerNormalization_output_0_tp_rs_sw 1.00000 | 2.8117 1.00000 | 1.7015 [exGelu] /core_model/stages/stages.3/blocks/blocks.1/mlp/fc1/MatMul_output_0_sw_sw 0.99999 | 0.0049 1.00000 | 0.0009 0.98598 | 0.2878 0.99058 | 0.2126 [Conv] /core_model/stages/stages.3/blocks/blocks.1/Mul_output_0 0.99999 | 0.1716 1.00000 | 0.0154 [Add] /core_model/stages/stages.3/blocks/blocks.1/Add_output_0 0.99999 | 0.9110 1.00000 | 0.0685 0.99691 | 18.113 1.00000 | 0.0382 [Conv] /core_model/stages/stages.3/blocks/blocks.2/conv_dw/Conv_output_0 1.00000 | 1.3217 1.00000 | 0.1748 0.99856 | 36.460 1.00000 | 0.0030 [exNorm] /core_model/stages/stages.3/blocks/blocks.2/Transpose_output_0_tp_rs_sw 1.00000 | 0.2768 1.00000 | 0.0810 0.99964 | 7.3444 1.00000 | 0.2561 [Conv] /core_model/stages/stages.3/blocks/blocks.2/norm/LayerNormalization_output_0_tp_rs_sw 1.00000 | 2.9884 1.00000 | 1.3662 [exGelu] /core_model/stages/stages.3/blocks/blocks.2/mlp/fc1/MatMul_output_0_sw_sw 0.99999 | 0.0113 1.00000 | 0.0019 0.95814 | 0.9074 0.99286 | 0.3760 [Conv] /core_model/stages/stages.3/blocks/blocks.2/Mul_output_0 0.99999 | 0.1632 1.00000 | 0.0135 [Add] /core_model/stages/stages.3/blocks/blocks.2/Add_output_0 0.99999 | 0.9357 1.00000 | 0.0686 0.99487 | 24.547 1.00000 | 0.0388 [Conv] /core_model/head/global_pool/pool/GlobalAveragePool_2conv0 1.00000 | 0.1376 1.00000 | 0.0183 0.99820 | 3.5928 1.00000 | 0.0002 [Conv] /core_model/head/global_pool/pool/GlobalAveragePool_output_0 1.00000 | 0.0141 1.00000 | 0.0034 0.99823 | 0.4880 1.00000 | 0.0 [exNorm] /core_model/head/norm/LayerNormalization 1.00000 | 0.0275 1.00000 | 0.0048 0.99748 | 0.9598 1.00000 | 0.0067 [Conv] /core_model/head/fc/Gemm_output_0_mm 1.00000 | 0.6485 1.00000 | 0.2296 [Sigmoid] output-rs 1.00000 | 0.0037 1.00000 | 0.0005 0.99068 | 0.3092 0.99649 | 0.1729 [Reshape] output 1.00000 | 0.0037 1.00000 | 0.0004 0.99068 | 0.3092 1.00000 | 0.0
问题解决,toolkit2把这个nhwc输入的onnx模型维度变成nwch了😅应该算是bug。
都2.3了还有这个问题啊
RKNN-Toolkit2版本: 2.3.0
模型: https://huggingface.co/SmilingWolf/wd-convnext-tagger-v3/tree/main
转换脚本:
NPU运行代码:
CPU运行代码:
输入图片:
ONNX推理结果(正确):
RKNN推理结果(错误):
精度分析结果: