ajitesh123 / auto-review-ai

πŸš€ AI-Powered Performance Review Generator
https://perfor-ai.streamlit.app/
3 stars 1 forks source link

Support for sound feature #23

Closed ajitesh123 closed 4 months ago

ajitesh123 commented 4 months ago

User description

This pull request adds the ability for users to provide speech input, which will then be converted from speech to text and used as input to the application. This feature allows users to speak their input instead of having to type it, providing a more convenient and natural interaction.

The main changes to implement this feature are:

  1. Added the SpeechRecognition library to the project dependencies in the requirements.txt file.
  2. Implemented a new endpoint /speech_to_text in the app_fastapi.py file, which accepts an audio file as input and uses the SpeechRecognition library to convert the speech to text.
  3. Updated the ReviewRequest and SelfReviewRequest models in review.py and self_review.py to include an optional audio_input field, which can be used to provide speech input.
  4. Modified the generate_review and generate_self_review functions in review.py and self_review.py to handle the case where an audio file is provided. If an audio file is present, the functions will use the SpeechRecognition library to convert the speech to text and use that as the input for the review or self-review generation.
  5. Added unit tests in test_speech_to_text.py, test_review.py, and test_self_review.py to ensure the new functionality works as expected, including handling errors during speech-to-text conversion.

With these changes, users can now provide speech input to the application, which will be converted to text and used to generate the performance review or self-review. This feature enhances the user experience by allowing more natural and convenient input methods.



___

### **PR Type**
Enhancement, Tests

___

### **Description**
- Added a new endpoint `/speech_to_text` in `app_fastapi.py` for converting speech to text.
- Updated `ReviewRequest` and `SelfReviewRequest` models to include an optional `audio_input` field.
- Modified `generate_review` and `generate_self_review` functions to handle speech input by converting audio to text.
- Added unit tests in `test_review.py` and `test_self_review.py` to ensure the new functionality works as expected, including handling errors during speech-to-text conversion.
- Updated `requirements.txt` to include the `SpeechRecognition` library.

___

### **Changes walkthrough** πŸ“
<table><thead><tr><th></th><th align="left">Relevant files</th></tr></thead><tbody><tr><td><strong>Enhancement</strong></td><td><table>
<tr>
  <td>
    <details>
      <summary><strong>app_fastapi.py</strong><dd><code>Add speech-to-text endpoint and integrate with review generation</code></dd></summary>
<hr>

app_fastapi.py

<li>Added a new endpoint <code>/speech_to_text</code> for converting speech to text.<br> <li> Updated existing endpoints to handle optional <code>audio_input</code> for speech <br>input.<br> <li> Included error handling for speech-to-text conversion.<br>

</details>

  </td>
  <td><a href="https://github.com/ajitesh123/Perf-Review-AI/pull/23/files#diff-12ae1733c1fe81510692dadf3ad3328d8801f864812689ff2dc412fe14fd04f0">+71/-9</a>&nbsp; &nbsp; </td>

</tr>                    

<tr>
  <td>
    <details>
      <summary><strong>self_review.py</strong><dd><code>Integrate speech-to-text in self-review generation</code>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; </dd></summary>
<hr>

self_review.py

<li>Added <code>audio_input</code> field to <code>SelfReviewRequest</code> model.<br> <li> Integrated speech-to-text conversion in <code>generate_self_review</code> function.<br> <br>

</details>

  </td>
  <td><a href="https://github.com/ajitesh123/Perf-Review-AI/pull/23/files#diff-8d75fdb81be503763ca54ea72969ee8d88c15319f64b3c1f080f40800dc18e4e">+20/-1</a>&nbsp; &nbsp; </td>

</tr>                    
</table></td></tr><tr><td><strong>Tests</strong></td><td><table>
<tr>
  <td>
    <details>
      <summary><strong>test_review.py</strong><dd><code>Add unit tests for review generation with audio input</code>&nbsp; &nbsp; &nbsp; &nbsp; </dd></summary>
<hr>

test_review.py

<li>Added unit tests for <code>generate_review</code> function.<br> <li> Included tests for handling <code>audio_input</code> in <code>generate_review</code>.<br>

</details>

  </td>
  <td><a href="https://github.com/ajitesh123/Perf-Review-AI/pull/23/files#diff-b4674f9a26b136d1d63f89b47c20c651210a6a436e7478bd8db688e26b9e0bba">+55/-0</a>&nbsp; &nbsp; </td>

</tr>                    

<tr>
  <td>
    <details>
      <summary><strong>test_self_review.py</strong><dd><code>Add unit tests for self-review generation with audio input</code></dd></summary>
<hr>

test_self_review.py

<li>Added unit tests for <code>generate_self_review</code> function.<br> <li> Included tests for handling <code>audio_input</code> in <code>generate_self_review</code>.<br>

</details>

  </td>
  <td><a href="https://github.com/ajitesh123/Perf-Review-AI/pull/23/files#diff-e2097618712daa262a86bf5db7b4e9cc0a7ac43e70b712e9d27cfe4e6ff393ea">+57/-0</a>&nbsp; &nbsp; </td>

</tr>                    
</table></td></tr><tr><td><strong>Dependencies</strong></td><td><table>
<tr>
  <td>
    <details>
      <summary><strong>requirements.txt</strong><dd><code>Add SpeechRecognition library to dependencies</code>&nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; </dd></summary>
<hr>

requirements.txt

- Added `SpeechRecognition` library to project dependencies.

</details>

  </td>
  <td><a href="https://github.com/ajitesh123/Perf-Review-AI/pull/23/files#diff-4d7c51b1efe9043e44439a949dfd92e5827321b34082903477fd04876edb7552">+1/-0</a>&nbsp; &nbsp; &nbsp; </td>

</tr>                    
</table></td></tr></tr></tbody></table>

___

> πŸ’‘ **PR-Agent usage**:
>Comment `/help` on the PR to get a list of all available PR-Agent tools and their descriptions

<!-- This is an auto-generated comment: release notes by coderabbit.ai -->

## Summary by CodeRabbit

- **New Features**
  - Introduced speech-to-text conversion endpoint.
  - Enhanced review generation to support optional audio input.

- **Bug Fixes**
  - Implemented CORS middleware to handle cross-origin requests.

- **Tests**
  - Added test cases for text and audio-based review generation.
  - Introduced fixtures for mocking speech recognition in tests.

- **Chores**
  - Updated dependencies to include the `SpeechRecognition` library.

<!-- end of auto-generated comment: release notes by coderabbit.ai -->
coderabbitai[bot] commented 4 months ago

Walkthrough

The recent changes add speech-to-text functionality to the FastAPI application by integrating speech_recognition and supporting audio input for generating reviews and self-reviews. This includes new API endpoints, updates to existing ones to accept optional audio input, and CORS middleware setup. Additionally, unit tests for the new and updated functionalities have been created to ensure robustness.

Changes

File Change Summary
app_fastapi.py Added speech-to-text conversion endpoint, CORS configuration, and updated review APIs to support optional audio input.
requirements.txt Included SpeechRecognition library version 3.8.1.
self_review.py Enhanced generate_self_review function to process audio input using speech_recognition.
test_review.py New tests for generate_review with both text and audio inputs; includes a fixture for mocking speech recognition.
test_self_review.py New tests for generate_self_review with both text and audio inputs; includes a fixture for mocking speech recognition.

Sequence Diagram(s)

sequenceDiagram
    participant Client
    participant FastAPI
    participant SpeechRecognition
    Client->>+FastAPI: POST /generate_review with audio_input
    FastAPI->>+SpeechRecognition: Convert audio to text
    SpeechRecognition-->>-FastAPI: Return text
    FastAPI->>FastAPI: Generate review from text
    FastAPI-->>-Client: Return generated review
sequenceDiagram
    participant Client
    participant FastAPI
    participant SpeechRecognition
    Client->>+FastAPI: POST /generate_self_review with audio_input
    FastAPI->>+SpeechRecognition: Convert audio to text
    SpeechRecognition-->>-FastAPI: Return text
    FastAPI->>FastAPI: Generate self-review from text
    FastAPI-->>-Client: Return generated self-review

Poem

In the warmth of summer’s heat,
🎀 Our app learns to listen, quite the feat!
From voices it turns into words so neat,
Reviews born from speech, a technological treat!
🌟 With tests to guide and ensure it's right,
Our code shines brightly, a developer's delight!
πŸŽ‰


Thank you for using CodeRabbit. We offer it for free to the OSS community and would appreciate your support in helping us grow. If you find it useful, would you consider giving us a shout-out on your favorite social media?

Share - [X](https://twitter.com/intent/tweet?text=I%20just%20used%20%40coderabbitai%20for%20my%20code%20review%2C%20and%20it%27s%20fantastic%21%20It%27s%20free%20for%20OSS%20and%20offers%20a%20free%20trial%20for%20the%20proprietary%20code.%20Check%20it%20out%3A&url=https%3A//coderabbit.ai) - [Mastodon](https://mastodon.social/share?text=I%20just%20used%20%40coderabbitai%20for%20my%20code%20review%2C%20and%20it%27s%20fantastic%21%20It%27s%20free%20for%20OSS%20and%20offers%20a%20free%20trial%20for%20the%20proprietary%20code.%20Check%20it%20out%3A%20https%3A%2F%2Fcoderabbit.ai) - [Reddit](https://www.reddit.com/submit?title=Great%20tool%20for%20code%20review%20-%20CodeRabbit&text=I%20just%20used%20CodeRabbit%20for%20my%20code%20review%2C%20and%20it%27s%20fantastic%21%20It%27s%20free%20for%20OSS%20and%20offers%20a%20free%20trial%20for%20proprietary%20code.%20Check%20it%20out%3A%20https%3A//coderabbit.ai) - [LinkedIn](https://www.linkedin.com/sharing/share-offsite/?url=https%3A%2F%2Fcoderabbit.ai&mini=true&title=Great%20tool%20for%20code%20review%20-%20CodeRabbit&summary=I%20just%20used%20CodeRabbit%20for%20my%20code%20review%2C%20and%20it%27s%20fantastic%21%20It%27s%20free%20for%20OSS%20and%20offers%20a%20free%20trial%20for%20proprietary%20code)
Tips ### Chat There are 3 ways to chat with [CodeRabbit](https://coderabbit.ai): - Review comments: Directly reply to a review comment made by CodeRabbit. Example: - `I pushed a fix in commit .` - `Generate unit testing code for this file.` - `Open a follow-up GitHub issue for this discussion.` - Files and specific lines of code (under the "Files changed" tab): Tag `@coderabbitai` in a new review comment at the desired location with your query. Examples: - `@coderabbitai generate unit testing code for this file.` - `@coderabbitai modularize this function.` - PR comments: Tag `@coderabbitai` in a new PR comment to ask questions about the PR branch. For the best results, please provide a very specific query, as very limited context is provided in this mode. Examples: - `@coderabbitai generate interesting stats about this repository and render them as a table.` - `@coderabbitai show all the console.log statements in this repository.` - `@coderabbitai read src/utils.ts and generate unit testing code.` - `@coderabbitai read the files in the src/scheduler package and generate a class diagram using mermaid and a README in the markdown format.` - `@coderabbitai help me debug CodeRabbit configuration file.` Note: Be mindful of the bot's finite context window. It's strongly recommended to break down tasks such as reading entire modules into smaller chunks. For a focused discussion, use review comments to chat about specific files and their changes, instead of using the PR comments. ### CodeRabbit Commands (invoked as PR comments) - `@coderabbitai pause` to pause the reviews on a PR. - `@coderabbitai resume` to resume the paused reviews. - `@coderabbitai review` to trigger an incremental review. This is useful when automatic reviews are disabled for the repository. - `@coderabbitai full review` to do a full review from scratch and review all the files again. - `@coderabbitai summary` to regenerate the summary of the PR. - `@coderabbitai resolve` resolve all the CodeRabbit review comments. - `@coderabbitai configuration` to show the current CodeRabbit configuration for the repository. - `@coderabbitai help` to get help. Additionally, you can add `@coderabbitai ignore` anywhere in the PR description to prevent this PR from being reviewed. ### CodeRabbit Configration File (`.coderabbit.yaml`) - You can programmatically configure CodeRabbit by adding a `.coderabbit.yaml` file to the root of your repository. - Please see the [configuration documentation](https://docs.coderabbit.ai/guides/configure-coderabbit) for more information. - If your editor has YAML language server enabled, you can add the path at the top of this file to enable auto-completion and validation: `# yaml-language-server: $schema=https://coderabbit.ai/integrations/schema.v2.json` ### Documentation and Community - Visit our [Documentation](https://coderabbit.ai/docs) for detailed information on how to use CodeRabbit. - Join our [Discord Community](https://discord.com/invite/GsXnASn26c) to get help, request features, and share feedback. - Follow us on [X/Twitter](https://twitter.com/coderabbitai) for updates and announcements.
codiumai-pr-agent-pro[bot] commented 4 months ago

PR Reviewer Guide πŸ”

(Review updated until commit https://github.com/ajitesh123/Perf-Review-AI/commit/0795f8d5d8e2cce14760c460199920d39e1d53cd)

⏱️ Estimated effort to review [1-5] 3
πŸ§ͺ Relevant tests Yes
πŸ”’ Security concerns No
⚑ Key issues to review Error Handling:
The error handling in the new endpoints (/generate_review, /generate_self_review, /speech_to_text) could be more specific. Instead of catching a general Exception, it would be better to handle specific exceptions that are expected to occur. This would help in diagnosing issues more effectively.
Audio File Handling:
The handling of audio files should ensure that the file is properly closed after processing. Using a context manager or ensuring cleanup in the error handling could prevent potential resource leaks.
Dependency on External Service:
The use of recognizer.recognize_google(audio) introduces a dependency on an external service (Google's speech recognition API). This could lead to issues if the service is down, has latency, or changes its API. Consideration for a fallback mechanism or local processing might be beneficial for reliability.
codiumai-pr-agent-pro[bot] commented 4 months ago

PR Code Suggestions ✨

CategorySuggestion                                                                                                                                    Score
Possible issue
Add error handling for missing audio files in the speech-to-text endpoint ___ **Consider handling the case where the audio_file parameter is not provided or is None in
the speech_to_text endpoint. This can prevent server errors due to missing files.** [app_fastapi.py [81]](https://github.com/ajitesh123/Perf-Review-AI/pull/23/files#diff-12ae1733c1fe81510692dadf3ad3328d8801f864812689ff2dc412fe14fd04f0R81-R81) ```diff -async def speech_to_text(audio_file: UploadFile = File(...)): +async def speech_to_text(audio_file: UploadFile = File(None)): + if audio_file is None: + raise HTTPException(status_code=400, detail="No audio file provided") ```
Suggestion importance[1-10]: 9 Why: This suggestion addresses a potential server error by adding error handling for missing audio files, which is crucial for robust API behavior.
9
Enhancement
Ensure that the audio_input is a valid audio file format ___ **Add validation to ensure that the audio_input field in the ReviewRequest and
SelfReviewRequest models is indeed an audio file. This can be done using Pydantic
validators.** [app_fastapi.py [16]](https://github.com/ajitesh123/Perf-Review-AI/pull/23/files#diff-12ae1733c1fe81510692dadf3ad3328d8801f864812689ff2dc412fe14fd04f0R16-R16) ```diff -audio_input: Optional[UploadFile] = None +from pydantic import validator +class ReviewRequest(BaseModel): + audio_input: Optional[UploadFile] = None + + @validator('audio_input') + def check_file_is_audio(cls, v): + if v and not v.filename.endswith(('.mp3', '.wav')): + raise ValueError('Unsupported file format') + return v + ``` - [ ] **Apply this suggestion**
Suggestion importance[1-10]: 8 Why: This suggestion enhances the robustness of the application by ensuring that the `audio_input` field is validated, preventing potential errors from unsupported file formats.
8
Maintainability
Refactor CORS middleware setup into a function to reduce code duplication ___ **Refactor the repeated CORS middleware setup by creating a function to apply the middleware
configuration to avoid code duplication.** [app_fastapi.py [17-23]](https://github.com/ajitesh123/Perf-Review-AI/pull/23/files#diff-12ae1733c1fe81510692dadf3ad3328d8801f864812689ff2dc412fe14fd04f0R17-R23) ```diff -app.add_middleware( - CORSMiddleware, - allow_origins=["*"], - allow_credentials=True, - allow_methods=["*"], - allow_headers=["*"], -) +def setup_cors(app): + app.add_middleware( + CORSMiddleware, + allow_origins=["*"], + allow_credentials=True, + allow_methods=["*"], + allow_headers=["*"], + ) +setup_cors(app) + ``` - [ ] **Apply this suggestion**
Suggestion importance[1-10]: 7 Why: This suggestion improves code maintainability by reducing duplication, but it does not address a critical issue.
7
ajitesh123 commented 4 months ago

/help

codiumai-pr-agent-pro[bot] commented 4 months ago

PR Agent Walkthrough πŸ€–

Welcome to the PR Agent, an AI-powered tool for automated pull request analysis, feedback, suggestions and more.

Here is a list of tools you can use to interact with the PR Agent:

ToolDescriptionTrigger Interactively :gem:
[DESCRIBE](https://pr-agent-docs.codium.ai/tools/describe/) Generates PR description - title, type, summary, code walkthrough and labels - [x] Run
[REVIEW](https://pr-agent-docs.codium.ai/tools/review/) Adjustable feedback about the PR, possible issues, security concerns, review effort and more - [x] Run
[IMPROVE](https://pr-agent-docs.codium.ai/tools/improve/) Code suggestions for improving the PR - [x] Run
[UPDATE CHANGELOG](https://pr-agent-docs.codium.ai/tools/update_changelog/) Automatically updates the changelog - [x] Run
[ADD DOCS](https://pr-agent-docs.codium.ai/tools/documentation/) πŸ’Ž Generates documentation to methods/functions/classes that changed in the PR - [x] Run
[TEST](https://pr-agent-docs.codium.ai/tools/test/) πŸ’Ž Generates unit tests for a specific component, based on the PR code change - [x] Run
[IMPROVE COMPONENT](https://pr-agent-docs.codium.ai/tools/improve_component/) πŸ’Ž Code suggestions for a specific component that changed in the PR - [x] Run
[ANALYZE](https://pr-agent-docs.codium.ai/tools/analyze/) πŸ’Ž Identifies code components that changed in the PR, and enables to interactively generate tests, docs, and code suggestions for each component - [x] Run
[ASK](https://pr-agent-docs.codium.ai/tools/ask/) Answering free-text questions about the PR [*]
[GENERATE CUSTOM LABELS](https://pr-agent-docs.codium.ai/tools/custom_labels/) πŸ’Ž Generates custom labels for the PR, based on specific guidelines defined by the user [*]
[CI FEEDBACK](https://pr-agent-docs.codium.ai/tools/ci_feedback/) πŸ’Ž Generates feedback and analysis for a failed CI job [*]
[CUSTOM PROMPT](https://pr-agent-docs.codium.ai/tools/custom_prompt/) πŸ’Ž Generates custom suggestions for improving the PR code, derived only from a specific guidelines prompt defined by the user [*]
[SIMILAR ISSUE](https://pr-agent-docs.codium.ai/tools/similar_issues/) Automatically retrieves and presents similar issues [*]

(1) Note that each tool be triggered automatically when a new PR is opened, or called manually by commenting on a PR.

(2) Tools marked with [*] require additional parameters to be passed. For example, to invoke the /ask tool, you need to comment on a PR: /ask "<question content>". See the relevant documentation for each tool for more details.

codiumai-pr-agent-pro[bot] commented 4 months ago

PR Documentation πŸ“š

Here is a list of the files that were modified in the PR, with docstring for each altered code component:

codiumai-pr-agent-pro[bot] commented 4 months ago

Changelog updates: πŸ”„

2024-06-28

Added

  • Support for speech input, allowing users to provide audio files that are converted to text for generating reviews and self-reviews.
  • New /speech_to_text endpoint for converting speech to text.
  • Unit tests for the new speech-to-text functionality.

Changed

  • Updated ReviewRequest and SelfReviewRequest models to include an optional audio_input field.
  • Modified review generation functions to handle audio input.

to commit the new content to the CHANGELOG.md file, please type: '/update_changelog --pr_update_changelog.push_changelog_changes=true'

codiumai-pr-agent-pro[bot] commented 4 months ago

PR-Agent: Missing component name in test command: /test <component_name>.
Running automatically on the largest changed component.


✨ Test tool usage guide:
The `test` tool generate tests for a selected component, based on the PR code changes. It can be invoked manually by commenting on any PR: ``` /test component_name ``` where 'component_name' is the name of a specific component in the PR. To get a list of the components that changed in the PR, use the [`analyze`](https://pr-agent-docs.codium.ai/tools/analyze/) tool. Language that are currently supported: Python, Java, C++, JavaScript, TypeScript. Configuration options: - `num_tests`: number of tests to generate. Default is 3. - `testing_framework`: the testing framework to use. If not set, for Python it will use `pytest`, for Java it will use `JUnit`, for C++ it will use `Catch2`, and for JavaScript and TypeScript it will use `jest`. - `avoid_mocks`: if set to true, the tool will try to avoid using mocks in the generated tests. Note that even if this option is set to true, the tool might still use mocks if it cannot generate a test without them. Default is true. - `extra_instructions`: Optional extra instructions to the tool. For example: "use the following mock injection scheme: ...". - `file`: in case there are several components with the same name, you can specify the relevant file. - `class_name`: in case there are several components with the same name in the same file, you can specify the relevant class name. See more information about the test tool in the [docs](https://pr-agent-docs.codium.ai/tools/test/).
codiumai-pr-agent-pro[bot] commented 4 months ago

PR-Agent: Missing component name in improve_component command: /improve_component <component_name>.
Running automatically on the largest changed component.


✨ Test tool usage guide:
The `test` tool generate tests for a selected component, based on the PR code changes. It can be invoked manually by commenting on any PR: ``` /test component_name ``` where 'component_name' is the name of a specific component in the PR. To get a list of the components that changed in the PR, use the [`analyze`](https://pr-agent-docs.codium.ai/tools/analyze/) tool. Language that are currently supported: Python, Java, C++, JavaScript, TypeScript. Configuration options: - `num_tests`: number of tests to generate. Default is 3. - `testing_framework`: the testing framework to use. If not set, for Python it will use `pytest`, for Java it will use `JUnit`, for C++ it will use `Catch2`, and for JavaScript and TypeScript it will use `jest`. - `avoid_mocks`: if set to true, the tool will try to avoid using mocks in the generated tests. Note that even if this option is set to true, the tool might still use mocks if it cannot generate a test without them. Default is true. - `extra_instructions`: Optional extra instructions to the tool. For example: "use the following mock injection scheme: ...". - `file`: in case there are several components with the same name, you can specify the relevant file. - `class_name`: in case there are several components with the same name in the same file, you can specify the relevant class name. See more information about the test tool in the [docs](https://pr-agent-docs.codium.ai/tools/test/).
codiumai-pr-agent-pro[bot] commented 4 months ago

Generated tests for 'test_generate_self_review_with_audio_input' ✏️️

    test_generate_self_review_with_audio_input (function) [+28/-0]

    Component signature: ```python def test_generate_self_review_with_audio_input(mock_speech_recognition): ```
    Tests for code changes in `test_generate_self_review_with_audio_input` function:

app_fastapi.py                                                                                                                                   

    api_generate_review (function) [+17/-5]                                                                                                         
    Component signature:
    ```python async def api_generate_review(request: ReviewRequest): ``` Docstring:
    ```python """ Generate a performance review based on the provided input. Parameters ---------- request : ReviewRequest A ReviewRequest object containing the necessary information for generating the review. It includes fields such as 'your_role', 'candidate_role', 'perf_question', 'your_review', 'llm_type', 'user_api_key', 'model_size', and an optional 'audio_input' field for speech input. Returns ------- dict A JSON object containing the generated review. Raises ------ HTTPException If there's an error during review generation or speech-to-text conversion. """ ```
    api_generate_self_review (function) [+17/-5]                                                                                               
    Component signature:
    ```python async def api_generate_self_review(request: SelfReviewRequest): ``` Docstring:
    ```python """ Generate a self-review based on the provided input. Parameters ---------- request : SelfReviewRequest A SelfReviewRequest object containing the necessary information for generating the self-review. This includes fields such as 'text_dump', 'questions', 'instructions', 'llm_type', 'user_api_key', 'model_size', and an optional 'audio_input' for speech input. Returns ------- dict A JSON object containing the generated self-review under the key 'self_review'. Raises ------ HTTPException If there's an error during self-review generation or speech-to-text conversion. """ ```
    speech_to_text (function) [+26/-0]                                                                                                                   
    Component signature:
    ```python async def speech_to_text(audio_file: UploadFile = File(...)): ``` Docstring:
    ```python """ Convert speech in an audio file to text using Google's speech recognition API. Parameters ---------- audio_file : UploadFile, optional An audio file containing speech to be converted to text. This is an uploaded file received from the client. Returns ------- dict A JSON object containing the converted text in the format {"text": }. Raises ------ HTTPException If there's an error during speech-to-text conversion, such as: - 400 status code: If the speech recognition could not understand the audio. - 500 status code: If there is an issue with the speech recognition service request or any other error during conversion. """ ```

self_review.py                                                                                                                                   

    SelfReviewRequest (class) [+2/-1]                                                                                                                     
    Component signature:
    ```python class SelfReviewRequest(BaseModel): ``` Docstring:
    ```python """ SelfReviewRequest is a Pydantic model that represents a request for a self-review process. Attributes ---------- text_dump : str The text content that needs to be reviewed. questions : List[str] A list of questions related to the text content. instructions : Optional[str], optional Additional instructions for the review process, by default None. llm_type : str The type of language model to be used for the review. user_api_key : str The API key provided by the user for authentication. model_size : str, optional The size of the model to be used, by default "medium". audio_input : Optional[UploadFile], optional An optional audio file input for the review process, by default None. Config ------ model_config : ConfigDict Configuration for the model, with protected namespaces. """ ```
    generate_self_review (function) [+17/-2]                                                                                                       
    Component signature:
    ```python def generate_self_review(text_dump: str, questions: List[str], instructions: Optional[str], llm_type: str, user_api_key: str, model_size: str, audio_input: Optional[UploadFile] = None) -> List[Dict[str, str]]: ``` Docstring:
    ```python """ Generate a comprehensive self-review based on provided text, questions, and optional audio input. This function utilizes a language model (LLM) to generate a self-review. It can process text directly or convert audio input to text before generating the review. The function constructs a prompt for the LLM, generates the review, and parses the response. Parameters ---------- text_dump : str A string containing various information about performance. questions : List[str] A list of questions to be answered in the self-review. instructions : Optional[str] Additional instructions for generating the self-review. llm_type : str The type of language model to use (e.g., "openai", "google", "anthropic", "groq"). user_api_key : str The API key for accessing the chosen language model. model_size : str The size of the model to be used. audio_input : Optional[UploadFile], optional An optional audio file input that will be converted to text, by default None. Returns ------- List[Dict[str, str]] A list of dictionaries, each containing a question and its corresponding detailed answer. Raises ------ ValueError If the audio input cannot be understood or if there are issues with the speech recognition service. ValueError If the LLM type is invalid. ValueError If no tags are found in the LLM response. Exception For any other errors during speech-to-text conversion. """ ```

test_review.py                                                                                                                                   

    test_generate_review (function) [+18/-0]                                                                                                       
    Component signature:
    ```python def test_generate_review(): ``` Docstring:
    ```python """ Test the `generate_review` function to ensure it generates a review correctly. This test mocks the `create_llm_instance` function to return a mock LLM instance, which in turn has its `generate_text` method mocked to return a predefined review string. It then calls the `generate_review` function with specific parameters and asserts that the generated review contains the expected text. Additionally, it verifies that the `generate_text` method of the mock LLM instance is called exactly once. Raises: AssertionError: If the generated review does not contain the expected text or if the `generate_text` method is not called exactly once. """ ```
    mock_speech_recognition (function) [+3/-0]                                                                                                   
    Component signature:
    ```python def mock_speech_recognition(): ``` Docstring:
    ```python """ A fixture that mocks the `speech_recognition.Recognizer` class for unit testing. This function uses the `unittest.mock.patch` method to replace the `Recognizer` class from the `speech_recognition` module with a mock object. It yields this mock object so that it can be used in tests to simulate speech recognition behavior without requiring actual audio processing. Yields: MagicMock: A mock object that replaces the `speech_recognition.Recognizer` class. """ ```
    test_generate_review_with_audio_input (function) [+27/-0]                                                                     
    Component signature:
    ```python def test_generate_review_with_audio_input(mock_speech_recognition): ``` Docstring:
    ```python """ Test the `generate_review` function with audio input. This test mocks the speech recognition process to simulate converting audio input into text and then generating a review based on that text using a mocked LLM instance. Args: mock_speech_recognition (MagicMock): A mock object for the speech recognition module. Raises: AssertionError: If the generated review does not contain the expected text or if the mock methods are not called as expected. """ ```

test_self_review.py                                                                                                                         

    test_generate_self_review (function) [+19/-0]                                                                                             
    Component signature:
    ```python def test_generate_self_review(): ``` Docstring:
    ```python """ Test the `generate_self_review` function with text input. This test mocks the `create_llm_instance` function to return a mock LLM instance. The mock LLM instance is configured to return a predefined self-review response. The test then verifies that the `generate_self_review` function correctly processes the input and produces the expected output. Steps: 1. Patch the `create_llm_instance` function to return a mock LLM instance. 2. Configure the mock LLM instance to return a predefined self-review response. 3. Call the `generate_self_review` function with sample inputs. 4. Assert that the result contains the expected question and answer. 5. Verify that the mock LLM's `generate_text` method was called once. Raises: AssertionError: If the result does not match the expected output. """ ```
    mock_speech_recognition (function) [+3/-0]                                                                                                   
    Component signature:
    ```python def mock_speech_recognition(): ``` Docstring:
    ```python """ A fixture that mocks the `speech_recognition.Recognizer` class for testing purposes. This function uses the `unittest.mock.patch` context manager to replace the `speech_recognition.Recognizer` class with a mock object. It yields this mock object, allowing tests to simulate and verify interactions with the recognizer without requiring actual audio processing. Yields: MagicMock: A mock object that replaces `speech_recognition.Recognizer`. """ ```
    test_generate_self_review_with_audio_input (function) [+28/-0]                                                           
    Component signature:
    ```python def test_generate_self_review_with_audio_input(mock_speech_recognition): ``` Docstring:
    ```python """ Test the `generate_self_review` function with audio input. This test verifies that the `generate_self_review` function correctly processes audio input by converting it to text using speech recognition and then generating a self-review based on the converted text. Args: mock_speech_recognition (MagicMock): A mock object for the speech recognition module to simulate audio-to-text conversion. Raises: AssertionError: If the generated self-review does not match the expected output. """ ```
[happy path]
The function should correctly process audio input and generate a self-review with the expected question and answer

test_code: ```python import pytest from unittest.mock import MagicMock, patch from self_review import generate_self_review def test_audio_input_processing(mock_speech_recognition): mock_recognizer = MagicMock() mock_recognizer.recognize_google.return_value = "This is an audio self-review" mock_speech_recognition.return_value = mock_recognizer mock_audio_file = MagicMock() mock_audio_file.file.read.return_value = b"mock audio data" with patch("self_review.create_llm_instance") as mock_create_llm: mock_llm = MagicMock() mock_llm.generate_text.return_value = "Q1A1 from audio" mock_create_llm.return_value = mock_llm result = generate_self_review( text_dump="", questions=["Q1"], instructions="Test instructions", llm_type="openai", user_api_key="test_key", model_size="medium", audio_input=mock_audio_file ) assert len(result) == 1 assert result[0]["question"] == "Q1" assert result[0]["answer"] == "A1 from audio" mock_recognizer.recognize_google.assert_called_once() mock_llm.generate_text.assert_called_once() ```
[edge case]
The function should raise a ValueError if the speech recognition service cannot understand the audio input

test_code: ```python import pytest from unittest.mock import MagicMock, patch from self_review import generate_self_review import speech_recognition as sr def test_audio_input_unintelligible(mock_speech_recognition): mock_recognizer = MagicMock() mock_recognizer.recognize_google.side_effect = sr.UnknownValueError mock_speech_recognition.return_value = mock_recognizer mock_audio_file = MagicMock() mock_audio_file.file.read.return_value = b"mock audio data" with pytest.raises(ValueError, match="Speech recognition could not understand the audio"): generate_self_review( text_dump="", questions=["Q1"], instructions="Test instructions", llm_type="openai", user_api_key="test_key", model_size="medium", audio_input=mock_audio_file ) ```
[edge case]
The function should raise a ValueError if there is a request error from the speech recognition service

test_code: ```python import pytest from unittest.mock import MagicMock, patch from self_review import generate_self_review import speech_recognition as sr def test_audio_input_request_error(mock_speech_recognition): mock_recognizer = MagicMock() mock_recognizer.recognize_google.side_effect = sr.RequestError("API unavailable") mock_speech_recognition.return_value = mock_recognizer mock_audio_file = MagicMock() mock_audio_file.file.read.return_value = b"mock audio data" with pytest.raises(ValueError, match="Could not request results from speech recognition service; API unavailable"): generate_self_review( text_dump="", questions=["Q1"], instructions="Test instructions", llm_type="openai", user_api_key="test_key", model_size="medium", audio_input=mock_audio_file ) ```
codiumai-pr-agent-pro[bot] commented 4 months ago

PR Analysis πŸ”¬

fileChanged components
app_fastapi.py
- [ ] Test - [ ] Docs - [ ] Improve - [ ] Similar
 
api_generate_review
(function)
 
+17/-5
 
- [ ] Test - [ ] Docs - [ ] Improve - [ ] Similar
 
api_generate_self_review
(function)
 
+17/-5
 
- [ ] Test - [ ] Docs - [ ] Improve - [ ] Similar
 
speech_to_text
(function)
 
+26/-0
 
self_review.py
- [ ] Test - [ ] Docs - [ ] Improve - [ ] Similar
 
SelfReviewRequest
(class)
 
+2/-1
 
- [ ] Test - [ ] Docs - [ ] Improve - [ ] Similar
 
generate_self_review
(function)
 
+17/-2
 
test_review.py
- [ ] Test - [ ] Docs - [ ] Improve - [ ] Similar
 
test_generate_review
(function)
 
+18/-0
 
- [ ] Test - [ ] Docs - [ ] Improve - [ ] Similar
 
mock_speech_recognition
(function)
 
+3/-0
 
- [ ] Test - [ ] Docs - [ ] Improve - [ ] Similar
 
test_generate_review_with_audio_input
(function)
 
+27/-0
 
test_self_review.py
- [ ] Test - [ ] Docs - [ ] Improve - [ ] Similar
 
test_generate_self_review
(function)
 
+19/-0
 
- [ ] Test - [ ] Docs - [ ] Improve - [ ] Similar
 
mock_speech_recognition
(function)
 
+3/-0
 
- [ ] Test - [ ] Docs - [ ] Improve - [ ] Similar
 
test_generate_self_review_with_audio_input
(function)
 
+28/-0
 

πŸ’‘ Usage guide:
Using static code analysis capabilities, the `analyze` tool scans the PR code changes and find the code components (methods, functions, classes) that changed in the PR. The tool can be triggered [automatically](https://pr-agent-docs.codium.ai/usage-guide/automations_and_usage/#github-app-automatic-tools-when-a-new-pr-is-opened) every time a new PR is opened, or can be invoked manually by commenting on any PR: ``` /analyze ``` Language that are currently supported: Python, Java, C++, JavaScript, TypeScript, C#. See more information about the tool in the [docs](https://pr-agent-docs.codium.ai/tools/analyze/).
codiumai-pr-agent-pro[bot] commented 4 months ago

Generated code suggestions for 'test_generate_self_review_with_audio_input'

codiumai-pr-agent-pro[bot] commented 4 months ago

Persistent review updated to latest commit https://github.com/ajitesh123/Perf-Review-AI/commit/0795f8d5d8e2cce14760c460199920d39e1d53cd

codiumai-pr-agent-pro[bot] commented 4 months ago

PR Description updated to latest commit (https://github.com/ajitesh123/Perf-Review-AI/commit/0795f8d5d8e2cce14760c460199920d39e1d53cd)

codiumai-pr-agent-pro[bot] commented 4 months ago

PR Code Suggestions ✨

CategorySuggestion                                                                                                                                    Score
Performance
Improve memory efficiency by streaming audio files instead of reading them entirely into memory ___ **The speech_to_text function currently reads the entire audio file into memory, which can
lead to high memory usage for large files. Consider streaming the audio file in chunks to
handle large files more efficiently.** [app_fastapi.py [95-98]](https://github.com/ajitesh123/Perf-Review-AI/pull/23/files#diff-12ae1733c1fe81510692dadf3ad3328d8801f864812689ff2dc412fe14fd04f0R95-R98) ```diff -audio_data = await audio_file.read() recognizer = sr.Recognizer() -with sr.AudioFile(BytesIO(audio_data)) as source: +with sr.AudioFile(audio_file.file) as source: audio = recognizer.record(source) ``` - [ ] **Apply this suggestion**
Suggestion importance[1-10]: 9 Why: This suggestion addresses a significant performance issue by improving memory efficiency, which is crucial for handling large audio files. The proposed change is directly relevant to the new code introduced in the PR and enhances the application's scalability.
9
Error handling
Add specific error handling for file reading issues in the speech_to_text function ___ **The exception handling in the speech_to_text function could be more specific by catching
IOError when reading the file, which would provide clearer error messages related to file
reading issues.** [app_fastapi.py [95-98]](https://github.com/ajitesh123/Perf-Review-AI/pull/23/files#diff-12ae1733c1fe81510692dadf3ad3328d8801f864812689ff2dc412fe14fd04f0R95-R98) ```diff -audio_data = await audio_file.read() +try: + audio_data = await audio_file.read() +except IOError as e: + raise HTTPException(status_code=400, detail=f"Error reading audio file: {str(e)}") recognizer = sr.Recognizer() with sr.AudioFile(BytesIO(audio_data)) as source: audio = recognizer.record(source) ``` - [ ] **Apply this suggestion**
Suggestion importance[1-10]: 8 Why: This suggestion improves error handling by providing more specific and informative error messages, which enhances the robustness of the `speech_to_text` function. It is a valuable addition to the new functionality introduced in the PR.
8
Add specific error handling for audio processing in the generate_review function ___ **The generate_review function is missing exception handling for the new audio_input
parameter. Add a specific catch for errors related to audio processing to enhance
robustness.** [app_fastapi.py [41-48]](https://github.com/ajitesh123/Perf-Review-AI/pull/23/files#diff-12ae1733c1fe81510692dadf3ad3328d8801f864812689ff2dc412fe14fd04f0R41-R48) ```diff -review = generate_review( - request.your_role, request.candidate_role, request.perf_question, - request.your_review, - request.llm_type, - request.user_api_key, - request.model_size, - request.audio_input -) +try: + review = generate_review( + request.your_role, request.candidate_role, request.perf_question, + request.your_review, + request.llm_type, + request.user_api_key, + request.model_size, + request.audio_input + ) +except AudioProcessingError as e: + raise HTTPException(status_code=400, detail=f"Audio processing failed: {str(e)}") ``` - [ ] **Apply this suggestion**
Suggestion importance[1-10]: 8 Why: This suggestion enhances the robustness of the `generate_review` function by adding specific error handling for audio processing, which is directly relevant to the new functionality introduced in the PR. It improves the application's reliability in handling audio input errors.
8
Maintainability
Refactor CORS middleware setup into a helper function to reduce code duplication ___ **The generate_review and generate_self_review functions have duplicated CORS middleware
setup. Consider creating a helper function to configure CORS settings to avoid code
duplication and improve maintainability.** [app_fastapi.py [17-23]](https://github.com/ajitesh123/Perf-Review-AI/pull/23/files#diff-12ae1733c1fe81510692dadf3ad3328d8801f864812689ff2dc412fe14fd04f0R17-R23) ```diff -app.add_middleware( - CORSMiddleware, - allow_origins=["*"], - allow_credentials=True, - allow_methods=["*"], - allow_headers=["*"], -) +def setup_cors(app): + app.add_middleware( + CORSMiddleware, + allow_origins=["*"], + allow_credentials=True, + allow_methods=["*"], + allow_headers=["*"], + ) +setup_cors(app) ``` - [ ] **Apply this suggestion**
Suggestion importance[1-10]: 7 Why: This suggestion improves code maintainability by reducing duplication. While it is not critical, it enhances the readability and maintainability of the code, making future updates easier.
7
ajitesh123 commented 4 months ago

/ask "Does it handle pydantic validation?"

codiumai-pr-agent-pro[bot] commented 4 months ago

Ask❓

Does it handle pydantic validation?

Answer:

Yes, the PR handles Pydantic validation by updating the ReviewRequest and SelfReviewRequest models to include an optional audio_input field. Here are the relevant changes:

In self_review.py:

from fastapi import UploadFile
from pydantic import BaseModel, ConfigDict
from typing import List, Dict, Optional

class SelfReviewRequest(BaseModel):
    text_dump: str
    questions: List[str]
    instructions: Optional[str] = None
    llm_type: str
    user_api_key: str
    model_size: str = "medium"
    audio_input: Optional[UploadFile] = None

    model_config = ConfigDict(protected_namespaces=())

The audio_input field is defined as an Optional[UploadFile], which means it can either be an UploadFile object or None. This ensures that the field is optional and will be validated correctly by Pydantic.

Similarly, the ReviewRequest model in review.py would have been updated in a similar manner to include the audio_input field, though the exact changes are not shown in the provided diff.

These changes ensure that the input data conforms to the expected structure and types, leveraging Pydantic's validation capabilities.

ajitesh123 commented 4 months ago

Can you add audio input feature to streamlit?

ajitesh123 commented 4 months ago

PR Type

Enhancement, Tests


Description


Changes walkthrough πŸ“

Relevant files
Enhancement
app_fastapi.py
Add speech-to-text endpoint and integrate with review generation

app_fastapi.py
  • Added a new endpoint /speech_to_text for converting speech to text.
  • Updated existing endpoints to handle optional audio_input for speech
    input.
  • Included error handling for speech-to-text conversion.
  • +71/-9   
    self_review.py
    Integrate speech-to-text in self-review generation             

    self_review.py
  • Added audio_input field to SelfReviewRequest model.
  • Integrated speech-to-text conversion in generate_self_review function.

  • +20/-1   
    Tests
    test_review.py
    Add unit tests for review generation with audio input       

    test_review.py
  • Added unit tests for generate_review function.
  • Included tests for handling audio_input in generate_review.
  • +55/-0   
    test_self_review.py
    Add unit tests for self-review generation with audio input

    test_self_review.py
  • Added unit tests for generate_self_review function.
  • Included tests for handling audio_input in generate_self_review.
  • +57/-0   
    Dependencies
    requirements.txt
    Add SpeechRecognition library to dependencies                       

    requirements.txt - Added `SpeechRecognition` library to project dependencies.
    +1/-0     

    πŸ’‘ PR-Agent usage: Comment /help on the PR to get a list of all available PR-Agent tools and their descriptions