Closed mahilaMoghadami closed 1 year ago
I haven't tested RetinaNet properly, it was from some preliminary experiments. Then I moved to FCOS to try an anchor-free detector.
I tried to train FCOS but I get this error:
INFO:croptrain.data.datasets.visdrone:Loaded 548 images in COCO format from /home/mahilamoghadami.mut/CZDet/dataset/VisDrone/annotations_VisDrone_val.json
INFO:croptrain.engine.inference_fcos:Start inference on 548 batches
INFO:croptrain.engine.inference_fcos:Inference done 11/548. Dataloading: 0.0010 s/iter. Inference: 0.1016 s/iter. Eval: 0.0006 s/iter. Total: 0.1032 s/iter. ETA=0:00:55
INFO:croptrain.engine.inference_fcos:Inference done 59/548. Dataloading: 0.0017 s/iter. Inference: 0.1027 s/iter. Eval: 0.0006 s/iter. Total: 0.1051 s/iter. ETA=0:00:51
INFO:croptrain.engine.inference_fcos:Inference done 107/548. Dataloading: 0.0020 s/iter. Inference: 0.1026 s/iter. Eval: 0.0006 s/iter. Total: 0.1053 s/iter. ETA=0:00:46
INFO:croptrain.engine.inference_fcos:Inference done 155/548. Dataloading: 0.0020 s/iter. Inference: 0.1026 s/iter. Eval: 0.0006 s/iter. Total: 0.1052 s/iter. ETA=0:00:41
INFO:croptrain.engine.inference_fcos:Inference done 202/548. Dataloading: 0.0020 s/iter. Inference: 0.1027 s/iter. Eval: 0.0010 s/iter. Total: 0.1057 s/iter. ETA=0:00:36
INFO:croptrain.engine.inference_fcos:Inference done 249/548. Dataloading: 0.0020 s/iter. Inference: 0.1031 s/iter. Eval: 0.0009 s/iter. Total: 0.1061 s/iter. ETA=0:00:31
INFO:croptrain.engine.inference_fcos:Inference done 296/548. Dataloading: 0.0020 s/iter. Inference: 0.1032 s/iter. Eval: 0.0009 s/iter. Total: 0.1062 s/iter. ETA=0:00:26
INFO:croptrain.engine.inference_fcos:Inference done 344/548. Dataloading: 0.0020 s/iter. Inference: 0.1033 s/iter. Eval: 0.0008 s/iter. Total: 0.1061 s/iter. ETA=0:00:21
INFO:croptrain.engine.inference_fcos:Inference done 392/548. Dataloading: 0.0020 s/iter. Inference: 0.1033 s/iter. Eval: 0.0008 s/iter. Total: 0.1061 s/iter. ETA=0:00:16
INFO:croptrain.engine.inference_fcos:Inference done 439/548. Dataloading: 0.0020 s/iter. Inference: 0.1034 s/iter. Eval: 0.0011 s/iter. Total: 0.1066 s/iter. ETA=0:00:11
INFO:croptrain.engine.inference_fcos:Inference done 486/548. Dataloading: 0.0021 s/iter. Inference: 0.1035 s/iter. Eval: 0.0010 s/iter. Total: 0.1066 s/iter. ETA=0:00:06
INFO:croptrain.engine.inference_fcos:Inference done 533/548. Dataloading: 0.0021 s/iter. Inference: 0.1035 s/iter. Eval: 0.0010 s/iter. Total: 0.1067 s/iter. ETA=0:00:01
INFO:croptrain.engine.inference_fcos:Total inference time: 0:00:57.919741 (0.106666 s / iter per device, on 1 devices)
INFO:croptrain.engine.inference_fcos:Total inference pure compute time: 0:00:56 (0.103500 s / iter per device, on 1 devices)
Traceback (most recent call last):
File "train_fcos.py", line 89, in
while I trained FaterRCNN with your code without any error. I mean that data structure and classes are ok without any changes.
hello is RetinaNet-ResNet.yaml complete config file for cascadezoom-in training on Retinanet?