High performance, easy-to-use, and scalable machine learning (ML) package, including linear model (LR), factorization machines (FM), and field-aware factorization machines (FFM) for Python and CLI interface.
hello, thx for your code!
I am confused with a problem.
here is my code.
`import xlearn as xl
fm_model = xl.create_fm()
fm_model.setTrain("./train.txt")
fm_model.setValidate("./test.txt")
fm_model.setTest("./test.txt") # Test data
`
I can run it successfully until the last line:"fm_model.predict("./model.txt", "output.txt")".
When it is fitting, it can output validate dataset result.
Validate set and test set in my case are the same one, I'm confused why it cann't running this line "fm_model.predict("./model.txt", "output.txt")".
hello, thx for your code! I am confused with a problem.
here is my code. `import xlearn as xl fm_model = xl.create_fm() fm_model.setTrain("./train.txt") fm_model.setValidate("./test.txt") fm_model.setTest("./test.txt") # Test data
param = {'task':'binary', 'lr':0.1,'epoch':200,'stop_window':5,'metric': 'auc','k':8}
fm_model.setTXTModel("./model.out") fm_model.fit(param, "./model.out") fm_model.setSigmoid() # Convert output to 0-1 fm_model.predict("./model.txt", "output.txt")
` I can run it successfully until the last line:"fm_model.predict("./model.txt", "output.txt")". When it is fitting, it can output validate dataset result. Validate set and test set in my case are the same one, I'm confused why it cann't running this line "fm_model.predict("./model.txt", "output.txt")".