Closed alessandro-maccario closed 1 year ago
[ ] Addizionare PCA nel transfer learning, unicamente come metodo di comparazione in termini di riduzione dei parametri. Non sarà il modello che poi utilizzeremo, ma solo come comparazione!
[ ] Salva tutti i modelli e passa a migliorare il notebook di evaluation.
[ ] Dopodiché riprendi l'ultimo notebook di Industry Lab come riferimento per il notebook di testing e deployment!
[ ] Inserisci valore di cut off sulla percentuale se inferiore al 50% allora la risposta fornita dalla rete deve essere relativa alla classe di rigetto.
[ ] Per il deployment usa i seguenti riferimenti:
https://www.freecodecamp.org/news/how-to-deploy-your-machine-learning-model-as-a-web-app-using-gradio/ https://www.section.io/engineering-education/deploying-machine-learning-model-as-an-app-in-python-using-gradio/ https://python.plainenglish.io/build-and-deploy-machine-learning-apps-with-gradio-the-easiest-way-to-create-a-web-user-interface-6f5219025da3 https://medium.com/@kalyaniavhale7/tutorial-on-gradio-library-ecb8055923a1 https://abidlabs.medium.com/deploy-a-machine-learning-model-in-seconds-56c400ecc0b3 https://trojrobert.github.io/a-guide-for-deploying-and-serving-machine-learning-with-model-streamlit-vs-gradio/ https://abdulsamodazeez.com/how-to-build-a-machine-learning-web-app-in-python-using-gradio https://www.youtube.com/watch?v=53x330upumY
Check:
References:
CNN EXPLAINED
CNN
DATA AUGMENTATION
HISTOGRAMS FOR COLORS IN IMAGE
MANIFOLD
DROPOUT
FINE-TUNING
CROSS-VALIDATION KERAS
GRIDSEARCH
TO TRY:
TO CHECK FOR MORE IDEAS FOR THE ARCHITECTURE
References:
https://github.com/TetsumichiUmada/food_app
https://github.com/AhmedMaghawry/Food-Image-Recognition/blob/master/Food_Detection.ipynb
FoodApp: http://blog.stratospark.com/creating-a-deep-learning-ios-app-with-keras-and-tensorflow.html
https://medium.com/@ksusorokina/image-classification-with-convolutional-neural-networks-496815db12a8
http://blog.stratospark.com/creating-a-deep-learning-ios-app-with-keras-and-tensorflow.html
Rejection class:
CNN:
-None of the above class approach:
Cat/Dog dataset:
Data augmentation:
Check the following notebook done during class:
Optimizers:
Refactoring the code:
USE TYPE ANNOTATION:
CONVERT REUSABLE CODE IN FUNCTIONS AND MOVE THEM TO THE UTILS.PY FILE
YOU SHOULD ALSO SAVE THE FINAL DATASET WITH ALL THE PERFOMANCE MEASURES AND TIME SPENT FOR EACH MODEL: