Open alexanderquispe opened 3 years ago
tex analytics, ML, economics in Brown - https://sites.google.com/view/amy-handlan/teaching#h.p7h7tdhmgjsd
Pearls causal epistemology - https://twitter.com/soboleffspaces/status/1490513077019627520/photo/1
how to code in Python - https://www.python.org/dev/peps/pep-0008/#package-and-module-names
Causal Inference and Data Fusion in Econometrics - https://arxiv.org/pdf/1912.09104.pdf
Causal inference in statistics: An overview - https://ftp.cs.ucla.edu/pub/stat_ser/r350.pdf
DAGs for teaching - https://twitter.com/AsjadNaqvi/status/1492266270921838604
Gift regressions - https://sites.google.com/view/robertostling/home/teaching
Parallel computing using python - https://twitter.com/radekosmulski/status/1495515618770096130/photo/1
Introduction to econometrics in R - https://github.com/NickCH-K/Econometrics
causality and econometrics - https://www.nber.org/papers/w29787
causality UCLA - https://www.youtube.com/watch?v=ci3muJMEYho
RCT example Pearl - https://ftp.cs.ucla.edu/pub/stat_ser/r513.pdf
Athey and Imbens on ML tools - https://www.annualreviews.org/doi/pdf/10.1146/annurev-economics-080217-053433
data Visualization - https://twitter.com/KirkDBorne/status/1500180801652248576
introduction to probabilities - https://github.com/norvig/pytudes/blob/main/ipynb/Probability.ipynb
High Performance Computing with Julia for macro - https://colab.research.google.com/drive/1Dt_Ah1X1e93PYWgxtjLtPg0nQRvC5rBR
Econometrics with python - https://www.kevinsheppard.com/files/teaching/python/notes/python_introduction_2021.pdf
color equations latex - https://github.com/synercys/annotated_latex_equations/blob/main/eqn_annotate.tex
statistical tools for causal inference - https://chabefer.github.io/STCI/
Deep learning visualization - https://towardsdatascience.com/deep-learning-with-python-neural-networks-complete-tutorial-6b53c0b06af0
jobs for julia experts - https://towardsdatascience.com/how-to-get-a-job-programming-in-julia-7f24a2ee563f
Computer science and causal inference conference - https://why21.causalai.net/
Design and Analysis of Experiments and Observational Studies using R - http://designexptr.org/causal-inference.html
CATE meets ML - https://github.com/QuantLet/Meta_learner-for-Causal-ML
Angrist and Imbens story about the nobel prize - https://www.gsb.stanford.edu/insights/unexpected-result-how-nobelist-guido-imbens-helped-kick-start-credibility-revolution
Program Evaluation - https://ds4ps.org/PROG-EVAL-III/index.html
selection bias - https://twitter.com/xkcd/status/1524497524391825409/photo/1
On Pearl’s Hierarchy and the Foundations of Causal Inference - https://causalai.net/r60.pdf
Causal Inference With Python - https://analyticsindiamag.com/a-complete-guide-to-causal-inference-in-python/
Introduction to computational thinking JULIA MIT - https://computationalthinking.mit.edu/Spring21/
CAUSLA FOREST RDD - https://arxiv.org/pdf/2106.11640.pdf
https://pythontutor.com/ Tool to visualize Class objects in Python.
https://twitter.com/amt_shrma/status/1553038161386676225, ICML & Causal Inference!