algorithm004-03 / algorithm004-03

43 stars 123 forks source link

【233-Week 01】学习总结 #172

Open luxuedong opened 5 years ago

luxuedong commented 5 years ago

233-Week 01 学习总结

学习内容

牢记师傅的话

Week 01 学习笔记链接

改写Deque的代码

public class DequeTest {
    public static void main(String[] args) {
        Deque<String> deque = new LinkedList<String>();
        deque.addFirst("f1");
        deque.addFirst("f2");
        deque.addLast("l1");
        deque.addLast("l2");
        deque.addFirst("f3");
        System.out.println(deque);
        System.out.println(deque.peekFirst());
        System.out.println(deque.getLast());

        while (deque.size() > 0) {
            System.out.println(deque.removeFirst());
        }
        System.out.println(deque);
    }
}

Queue 源码分析

操作 抛出异常 返回特定值
Insert add() offer(e) false
Remove remove() poll() null
Examine element() peek() null
public interface Queue<E> extends Collection<E> {
    //向队列中插入一个元素,并返回true
    //如果队列已满,抛出IllegalStateException异常
    boolean add(E e);
    //向队列中插入一个元素,并返回true
    //如果队列已满,返回false
    boolean offer(E e);
    //取出队列头部的元素,并从队列中移除
    //队列为空,抛出NoSuchElementException异常
    E remove();
    //取出队列头部的元素,并从队列中移除
    //队列为空,返回null
    E poll();
    //取出队列头部的元素,但并不移除
    //如果队列为空,抛出NoSuchElementException异常
    E element();
    //取出队列头部的元素,但并不移除
    //队列为空,返回null
    E peek();
}

Priority Queue 源码分析

入队

入队有两个方法,add(E e)和offer(E e),两者是一致的,add(E e)也是调用的offer(E e)。

public boolean add(E e) {
    return offer(e);
}

public boolean offer(E e) {
    // 不支持null元素
    if (e == null)
        throw new NullPointerException();
    modCount++;
    // 取size
    int i = size;
    // 元素个数达到最大容量了,扩容
    if (i >= queue.length)
        grow(i + 1);
    // 元素个数加1
    size = i + 1;
    // 如果还没有元素
    // 直接插入到数组第一个位置
    // 这里跟我们之前讲堆不一样了
    // java里面是从0开始的
    // 我们说的堆是从1开始的
    if (i == 0)
        queue[0] = e;
    else
        // 否则,插入元素到数组size的位置,也就是最后一个元素的下一位
        // 注意这里的size不是数组大小,而是元素个数
        // 然后,再做自下而上的堆化
        siftUp(i, e);
    return true;
}

private void siftUp(int k, E x) {
    // 根据是否有比较器,使用不同的方法
    if (comparator != null)
        siftUpUsingComparator(k, x);
    else
        siftUpComparable(k, x);
}

@SuppressWarnings("unchecked")
private void siftUpComparable(int k, E x) {
    Comparable<? super E> key = (Comparable<? super E>) x;
    while (k > 0) {
        // 找到父节点的位置
        // 因为元素是从0开始的,所以减1之后再除以2
        int parent = (k - 1) >>> 1;
        // 父节点的值
        Object e = queue[parent];
        // 比较插入的元素与父节点的值
        // 如果比父节点大,则跳出循环
        // 否则交换位置
        if (key.compareTo((E) e) >= 0)
            break;
        // 与父节点交换位置
        queue[k] = e;
        // 现在插入的元素位置移到了父节点的位置
        // 继续与父节点再比较
        k = parent;
    }
    // 最后找到应该插入的位置,放入元素
    queue[k] = key;
}

出队

出队有两个方法,remove()和poll(),remove()也是调用的poll(),只是没有元素的时候抛出异常。

public E remove() {
    // 调用poll弹出队首元素
    E x = poll();
    if (x != null)
        // 有元素就返回弹出的元素
        return x;
    else
        // 没有元素就抛出异常
        throw new NoSuchElementException();
}

@SuppressWarnings("unchecked")
public E poll() {
    // 如果size为0,说明没有元素
    if (size == 0)
        return null;
    // 弹出元素,元素个数减1
    int s = --size;
    modCount++;
    // 队列首元素
    E result = (E) queue[0];
    // 队列末元素
    E x = (E) queue[s];
    // 将队列末元素删除
    queue[s] = null;
    // 如果弹出元素后还有元素
    if (s != 0)
        // 将队列末元素移到队列首
        // 再做自上而下的堆化
        siftDown(0, x);
    // 返回弹出的元素
    return result;
}

private void siftDown(int k, E x) {
    // 根据是否有比较器,选择不同的方法
    if (comparator != null)
        siftDownUsingComparator(k, x);
    else
        siftDownComparable(k, x);
}

@SuppressWarnings("unchecked")
private void siftDownComparable(int k, E x) {
    Comparable<? super E> key = (Comparable<? super E>)x;
    // 只需要比较一半就行了,因为叶子节点占了一半的元素
    int half = size >>> 1;        // loop while a non-leaf
    while (k < half) {
        // 寻找子节点的位置,这里加1是因为元素从0号位置开始
        int child = (k << 1) + 1; // assume left child is least
        // 左子节点的值
        Object c = queue[child];
        // 右子节点的位置
        int right = child + 1;
        if (right < size &&
            ((Comparable<? super E>) c).compareTo((E) queue[right]) > 0)
            // 左右节点取其小者
            c = queue[child = right];
        // 如果比子节点都小,则结束
        if (key.compareTo((E) c) <= 0)
            break;
        // 如果比最小的子节点大,则交换位置
        queue[k] = c;
        // 指针移到最小子节点的位置继续往下比较
        k = child;
    }
    // 找到正确的位置,放入元素
    queue[k] = key;
}

扩容

  1. 当数组比较小(小于64)的时候每次扩容容量翻倍;
  2. 当数组比较大的时候每次扩容只增加一半的容量

    
    private void grow(int minCapacity) {
    // 旧容量
    int oldCapacity = queue.length;
    // Double size if small; else grow by 50%
    // 旧容量小于64时,容量翻倍
    // 旧容量大于等于64,容量只增加旧容量的一半
    int newCapacity = oldCapacity + ((oldCapacity < 64) ?
                                     (oldCapacity + 2) :
                                     (oldCapacity >> 1));
    // overflow-conscious code
    // 检查是否溢出
    if (newCapacity - MAX_ARRAY_SIZE > 0)
        newCapacity = hugeCapacity(minCapacity);
    
    // 创建出一个新容量大小的新数组并把旧数组元素拷贝过去
    queue = Arrays.copyOf(queue, newCapacity);
    }

private static int hugeCapacity(int minCapacity) { if (minCapacity < 0) // overflow throw new OutOfMemoryError(); return (minCapacity > MAX_ARRAY_SIZE) ? Integer.MAX_VALUE : MAX_ARRAY_SIZE; }

### 取队首元素
> 取队首元素有两个方法,element()和peek(),element()也是调用的peek(),只是没取到元素时抛出异常

1. 如果有元素就取下标0的元素
2. 如果没有元素就返回null,element()抛出异常

public E element() { E x = peek(); if (x != null) return x; else throw new NoSuchElementException(); } public E peek() { return (size == 0) ? null : (E) queue[0]; }

kelly422 commented 5 years ago

哇 很详细啊