Hi everyone!
I've faced the following problem: after quantization I can't run model inference on python correctly. The logs are 'recover int8 weights error'. What can be the issue here and how to deal with it? (before quantization mnn model runs perfectly)
I'm using MNN library
'''
interpreter = MNN.Interpreter(args.model_path)
session = interpreter.createSession()
input_tensor = interpreter.getSessionInput(session)
...
tmp_input = MNN.Tensor((1, 3, input_size[1], input_size[0]), MNN.Halide_Type_Float, image, MNN.Tensor_DimensionType_Caffe)
input_tensor.copyFrom(tmp_input)
interpreter.runSession(session)
scores = interpreter.getSessionOutput(session, "scores").getData()
boxes = interpreter.getSessionOutput(session, "boxes").getData()
'''
Hi everyone! I've faced the following problem: after quantization I can't run model inference on python correctly. The logs are 'recover int8 weights error'. What can be the issue here and how to deal with it? (before quantization mnn model runs perfectly) I'm using MNN library ''' interpreter = MNN.Interpreter(args.model_path) session = interpreter.createSession() input_tensor = interpreter.getSessionInput(session) ... tmp_input = MNN.Tensor((1, 3, input_size[1], input_size[0]), MNN.Halide_Type_Float, image, MNN.Tensor_DimensionType_Caffe) input_tensor.copyFrom(tmp_input) interpreter.runSession(session) scores = interpreter.getSessionOutput(session, "scores").getData() boxes = interpreter.getSessionOutput(session, "boxes").getData() '''