What is num_true_boxes? is this the same as num_anchors? And i see that it is not actually used in the code at all
def yolo_loss(args,
anchors,
num_classes,
rescore_confidence=False,
print_loss=False):
"""YOLO localization loss function.
Parameters
----------
yolo_output : tensor
Final convolutional layer features.
true_boxes : tensor
Ground truth boxes tensor with shape [batch, num_true_boxes, 5]
containing box x_center, y_center, width, height, and class.
detectors_mask : array
0/1 mask for detector positions where there is a matching ground truth.
matching_true_boxes : array
Corresponding ground truth boxes for positive detector positions.
Already adjusted for conv height and width.
anchors : tensor
Anchor boxes for model.
num_classes : int
Number of object classes.
rescore_confidence : bool, default=False
If true then set confidence target to IOU of best predicted box with
the closest matching ground truth box.
print_loss : bool, default=False
If True then use a tf.Print() to print the loss components.
Returns
-------
mean_loss : float
mean localization loss across minibatch
"""
What is num_true_boxes? is this the same as num_anchors? And i see that it is not actually used in the code at all