Open egormcobakaster opened 11 months ago
@egormcobakaster This seems to indicate the environment in which the clearml-agent running your pipeline is deployed is not properly configured. Where are you running this clearml-agent? Did you complete clearml-agent init
properly?
@egormcobakaster This seems to indicate the environment in which the clearml-agent running your pipeline is deployed is not properly configured. Where are you running this clearml-agent? Did you complete
clearml-agent init
properly?
i am running clearml-agent on the same machine as the clearml-server.
when I start a new agent with a new queue:
clearml-agent daemon --queue 6c86514d67014415967bc1d319f03fac
this error disappears and individual tasks are launched from the ui, but when I start pipline, the first task gets queued and does not leave the queue
Hi @egormcobakaster, Can you share the log of the pipeline task and your pipeline code?
Also, do you only have a single clearml-agent running? and what is the queue name it listens to?
Hi @jkhenning, pipeline log:
Environment setup completed successfully
Starting Task Execution:
ClearML results page: http://172.21.0.98:8080/projects/6072ec75526e493f917e5e770f24319d/experiments/abf2370a46bc4844984d98643e995ff4/output/log
ClearML pipeline page: http://172.21.0.98:8080/pipelines/6072ec75526e493f917e5e770f24319d/experiments/abf2370a46bc4844984d98643e995ff4
2023-12-11 10:03:05,217 - clearml.util - WARNING - 2 task found when searching for {'project_name': 'data process', 'task_name': 'Pipeline step 2 create clearml dataset', 'include_archived': True, 'task_filter': {'status': ['created', 'queued', 'in_progress', 'published', 'stopped', 'completed', 'closed']}}
2023-12-11 10:03:05,217 - clearml.util - WARNING - Selected task Pipeline step 2 create clearml dataset
(id=adad180edd364cb1b8cedcb77e0a7712)
Launching the next 1 steps
Launching step [anotation]
Cloning Task id=8e7aac5e6f004730a0a3088f6fb0e327 with parameters: {'General/dataset_path': '/mnt/ext2/datasets/DataSet/Casia_images'}
Launching step: anotation
Parameters:
{'General/dataset_path': '${pipeline.path}'}
Configurations:
{}
Overrides:
{}
pipeline code:
from clearml import Dataset
import argparse
import sys
from clearml import Task
from clearml.automation import PipelineController
def pre_execute_callback_example(a_pipeline, a_node, current_param_override):
# type (PipelineController, PipelineController.Node, dict) -> bool
print(
"Cloning Task id={} with parameters: {}".format(
a_node.base_task_id, current_param_override
)
)
# if we want to skip this node (and subtree of this node) we return False
# return True to continue DAG execution
return True
def post_execute_callback_example(a_pipeline, a_node):
# type (PipelineController, PipelineController.Node) -> None
print("Completed Task id={}".format(a_node.executed))
# if we need the actual executed Task: Task.get_task(task_id=a_node.executed)
return
parser = argparse.ArgumentParser()
parser.add_argument('--path', default='', action='store',
help='path to dataset')
args = parser.parse_args()
if args.path == '':
print("empty path to dataset")
sys.exit()
pipe = PipelineController(
name="Pipeline demo", project="data process", version="0.0.1", add_pipeline_tags=False
)
pipe.add_parameter(
"path",
args.path,
"path_to_dataset",
)
pipe.set_default_execution_queue("default")
pipe.add_step(
name="anotation",
base_task_project="data process",
base_task_name="Pipeline step 1 create anotation",
parameter_override={"General/dataset_path": "${pipeline.path}"},
pre_execute_callback=pre_execute_callback_example,
post_execute_callback=post_execute_callback_example,
)
pipe.add_step(
name="create dataset",
parents=["anotation"],
base_task_project="data process",
base_task_name="Pipeline step 2 create clearml dataset",
parameter_override={
"General/dataset_path": "${pipeline.path}",
},
pre_execute_callback=pre_execute_callback_example,
post_execute_callback=post_execute_callback_example,
)
pipe.start()
print("done")
the first task only gets queued and is not executed:
@jkhenning , @ainoam Thanks for the answers, it helped me to create another queue. one for the pipeline and the other for tasks
when i run pipline from ui appears error: clearml_agent: ERROR: Could not find host server definition (missing
~/clearml.conf
or Environment CLEARML_API_HOST) To get started with ClearML: setup your ownclearml-server
, or create a free account at https://app.clear.ml and runclearml-agent init
docker-compose.yaml:
version: "3.6" services:
apiserver: command:
"8008:8008" networks:
elasticsearch: networks:
fileserver: networks:
"8081:8081"
mongo: networks:
./data/mongo_4/configdb:/data/configdb
redis: networks:
./data/redis:/data
webserver: command:
environment:
CLEARML_SERVER_SUB_PATH : clearml-web # Allow Clearml to be served with a URL path prefix.
image: allegroai/clearml:latest restart: unless-stopped depends_on:
"8080:80" networks:
async_delete: depends_on:
agent-services: networks:
networks: backend: driver: bridge frontend: driver: bridge