allegroai / clearml

ClearML - Auto-Magical CI/CD to streamline your AI workload. Experiment Management, Data Management, Pipeline, Orchestration, Scheduling & Serving in one MLOps/LLMOps solution
https://clear.ml/docs
Apache License 2.0
5.72k stars 657 forks source link

Incorrect ordering of iterations in scalar reporting of metrics #1265

Open HackXIt opened 6 months ago

HackXIt commented 6 months ago

Describe the bug

I believe I discovered a bug or at least weird behavior in the ClearML scalar reporting mechanism.

In my data processing task, I have a metric, which in theory as well as in the implementation can only ever increase in value. I report the scalar in each iteration of the loop.

However, when viewed in ClearML, it shows that the scalar is actually dropping in value in certain runs of the tasks.

It is apparent, that the ordering of the reported iterations is incorrect and as such, earlier iterations are actually reported later. This does not occur all the time, however.

Additionally, I am confused by the scalar metric in general, since I clearly have iterations going from 0 to X in incremental steps of 1. But the plot actually shows it going from iteration 0 to something like iteration 6 or 7. So there's also something incorrect there.

Correct report: Correct_scalar-report Incorrect report: Incorrect_scalar-report

To reproduce

  1. Create a task in function
  2. Store a variable starting with 0
  3. Run a loop in the task
  4. Perform a lengthy task (calling a subprocess for example doing data processing)
  5. Increase variable by X
  6. Report variable in each iteration of the loop

Retry those steps some amount of times and view the report in ClearML.

Code that produced the issue for me ```python def capture_design(design_folder: str): import subprocess, os, shutil from clearml import Task print(f"Capturing designs from {design_folder}...") task = Task.current_task() logger = task.get_logger() design_files = [f for f in os.listdir(design_folder) if os.path.isfile(os.path.join(design_folder, f))] if len(design_files) == 0: print(f"No design files found in {design_folder}") return widgets = {} for widget in implemented_types: widgets[widget] = 0 files = [] errors = 0 logger.report_scalar(title='Generator', series='total_widgets', value=sum(widgets.values()), iteration=0) logger.report_scalar(title='Generator', series='errors', value=errors, iteration=0) for widget in widgets: logger.report_scalar(title='Widget metrics', series=widget, value=widgets[widget], iteration=0) for i, design_file in enumerate(design_files): print(f"Iteration: {i+1}/{len(design_files)} - {design_file}") attempts = 0 success = False # NOTE Retry mechanism due to possible MemoryErrors when dynamically allocating screenshot data (Trust in the OS to clean up the mess) while not success and attempts < 4: print(f"Running design generator on file {design_file}") gen = subprocess.run([os.path.abspath(env['mpy_path']), os.path.abspath(env['mpy_main']), '-m', 'design', '-o', 'screenshot.jpg', '-f', os.path.abspath(os.path.join(design_folder, design_file)), '--normalize'], cwd=os.path.abspath(os.path.curdir), capture_output=True, text=True) if gen.returncode != 0: print(f"Failed to generate UI from design file {design_file}:\n{gen.stdout}\n{gen.stderr}") attempts += 1 continue success = True if not success: print(f"Failed to generate UI from design file {design_file} after {attempts} attempts") errors += 1 continue tmp_image = os.path.abspath(os.path.join(os.path.abspath(os.path.curdir), "screenshot.jpg")) tmp_text = os.path.abspath(os.path.join(os.path.abspath(os.path.curdir), "screenshot.txt")) if not os.path.exists(tmp_image) or not os.path.exists(tmp_text): print(f"Failed to find generated UI files from design file {design_file}") errors += 1 continue gen_image = os.path.abspath(os.path.join(env['output_folder'], f"ui_{i}.jpg")) gen_text = os.path.abspath(os.path.join(env['output_folder'], f"ui_{i}.txt")) try: shutil.move(tmp_image, gen_image) shutil.move(tmp_text, gen_text) except FileNotFoundError as e: print(f"Failed to move files from design file {design_file}:\n{tmp_image} -> {gen_image}\n{tmp_text} -> {gen_text}\n{e}") errors += 1 continue files.append((gen_image, gen_text)) annotation_errors = [] with open(gen_text, 'r+') as f: # Each line is in this format: "class x y w h" (Need to grab class) new_lines = [] for i, line in enumerate(f.readlines()): widget, x, y, w, h = line.split(' ') x, y, w, h = float(x), float(y), float(w), float(h) if any([x < 0.0, y < 0.0, w < 0.0, h < 0.0]) or any([x > 1.0, y > 1.0, w > 1.0, h > 1.0]): errors += 1 print(f"[Line {i}] Invalid bounding box found in annotation file of {design_file}") print(f"Removed: {widget} {x} {y} {w} {h}") annotation_errors.append(i) continue new_lines.append(line) if widget in widgets: widgets[widget] += 1 else: errors += 1 print(f"[Line {i}] Unknown widget class {widget} found in annotation file of {design_file}") # NOTE Delete invalid annotations in label file f.seek(0) f.writelines(new_lines) f.truncate() del new_lines logger.report_scalar(title='Generator', series='total_widgets', value=sum(widgets.values()), iteration=i+1) logger.report_scalar(title='Generator', series='errors', value=errors, iteration=i+1) for widget in widgets: logger.report_scalar(title='Widget metrics', series=widget, value=widgets[widget], iteration=i+1) generated_files = len(files) env['generated_files'] = generated_files env['files'] = files ```

Expected behaviour

Scalar plot should display the reported values for each iteration in the order that they were reported in. (i.e. each iteration in sequence)

Environment

Related Discussion

https://clearml.slack.com/archives/CTK20V944/p1715875927944579

jkhenning commented 6 months ago

Hi @HackXIt , thanks for the report, we'll try to reproduce