description:
language: Dutch
identifier: CGN_all
modeltype: NNet3
use-nnet2: True
decoder:
# All the properties nested here correspond to the kaldinnet2onlinedecoder GStreamer plugin properties.
# Use gst-inspect-1.0 ./libgstkaldionline2.so kaldinnet2onlinedecoder to discover the available properties
nnet-mode : 3
use-threaded-decoder : true
model : /opt/kaldi-gstreamer-server/mod/final.mdl
word-syms : /opt/kaldi-gstreamer-server/mod/words.txt
fst : /opt/kaldi-gstreamer-server/mod/HCLG.fst
mfcc-config : /opt/kaldi-gstreamer-server/mod/conf/mfcc.conf
ivector-extraction-config : /opt/kaldi-gstreamer-server/mod/conf/ivector_extractor.conf
frame-subsampling-factor : 3
max-active: 7000
beam: 10.0
lattice-beam: 6.0
acoustic-scale: 0.9
do-endpointing : true
endpoint-silence-phones : "1:2:3:4:5"
endpoint-rule1-min-trailing-silence : 1.0
traceback-period-in-secs : 0.25
chunk-length-in-secs : 0.25
num-nbest : 1
#Additional functionality that you can play with:
lm-fst : /opt/kaldi-gstreamer-server/mod/G.fst
big-lm-const-arpa : /opt/kaldi-gstreamer-server/mod/G.carpa
phone-syms : /opt/kaldi-gstreamer-server/mod/phones.txt
word-boundary-file : /opt/kaldi-gstreamer-server/mod/word_boundary.int
# do-phone-alignment : false
# If specified, this location stores all audio in 'raw' format
out-dir: tmp
use-vad: False
silence-timeout: 120
# Just a sample post-processor that appends "." to the hypothesis
post-processor: perl -npe 'BEGIN {use IO::Handle; STDOUT->autoflush(1);} s/(.*)/\1./;'
# A sample full post processor that add a confidence score to 1-best hyp and deletes other n-best hyps
full-post-processor: /opt/kaldi-gstreamer-server/sample_full_post_processor.py
logging:
version : 1
disable_existing_loggers: False
formatters:
simpleFormater:
format: '%(asctime)s - %(levelname)7s: %(name)10s: %(message)s'
datefmt: '%Y-%m-%d %H:%M:%S'
handlers:
console:
class: logging.StreamHandler
formatter: simpleFormater
level: DEBUG
root:
level: DEBUG
handlers: [console]
beam config has no effect at all. Decoding is very slow (and a bit more accurate) no matter which max-active parameter or beam is configured in yml file. It seems that the default values (beam=16, max-active=27618...; lattice-beam=10) are used.
The problem seems be related to the following piece of code.
Although I couldn't reproduce it with my own nnet3 setup, the code block that you pointed out is obviously wrong (since nnet3 does not have a threaded decoder) and is now fixed.
With this setup:
https://github.com/laurensw75/docker-Kaldi-NL
with this yml file:
beam config has no effect at all. Decoding is very slow (and a bit more accurate) no matter which max-active parameter or beam is configured in yml file. It seems that the default values (beam=16, max-active=27618...; lattice-beam=10) are used.
The problem seems be related to the following piece of code.
https://github.com/alumae/gst-kaldi-nnet2-online/blob/31d77e0ec34a8160bde60927022e4f262af1b935/src/gstkaldinnet2onlinedecoder.cc#L535