Open aman77singh opened 1 month ago
/ General Styles / body, html { margin: 0; padding: 0; height: 100%; overflow: hidden; / Prevent scrolling / }
.background { position: relative; width: 100%; height: 100%; background-color: black; / Set background color / }
spline-viewer { width: 100%; height: 100%; position: absolute; top: 0; left: 0; }
.overlay { position: absolute; top: 50%; left: 50%; transform: translate(-50%, -50%); text-align: center; color: white; / Text color / }
h1 { font-size: 3em; margin-bottom: 20px; color: #00bfa6; }
p { font-size: 1.2em; margin-bottom: 40px; max-width: 600px; color: #ddd; }
.cta-button { background-color: #00bfa6; color: black; padding: 15px 30px; border-radius: 30px; text-decoration: none; font-size: 1em; transition: background-color 0.3s ease; }
.cta-button:hover { background-color: #00a98f; }
<!DOCTYPE html>
<!DOCTYPE html>
Pioneering Financial Security with Quantum Precision
<!DOCTYPE html>
<!DOCTYPE html>
Pioneering Financial Security with Quantum Precision
<!DOCTYPE html>
<!DOCTYPE html>
Pioneering Financial Security with Quantum Precision
import streamlit as st import pandas as pd import numpy as np import pennylane as qml from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.metrics import classification_report, accuracy_score from sklearn.decomposition import PCA import matplotlib.pyplot as plt
Set up the Streamlit interface
st.title("Quantum vs Traditional Model Comparison") st.write("Upload your dataset and see how the Quantum model compares with a Traditional ML model.")
File upload
uploaded_file = st.file_uploader("Upload CSV", type="csv") if uploaded_file is not None: data = pd.read_csv(uploaded_file)