Open RobotiX101 opened 4 weeks ago
use the modelscope VAE, UNet and text encoder weights as README suggest, but crashed while loading vae
Traceback (most recent call last): File "/home/turing/workspace/instruct-video-to-video/video_prompt_to_prompt.py", line 136, in <module> vae, unet, text_model = get_models_of_damo_model( File "/home/turing/workspace/instruct-video-to-video/misc_utils/video_ptp_utils.py", line 23, in get_models_of_damo_model vae.load_state_dict(torch.load(vae_ckpt, map_location='cpu')) File "/opt/conda/envs/iv2v/lib/python3.10/site-packages/torch/nn/modules/module.py", line 2152, in load_state_dict raise RuntimeError('Error(s) in loading state_dict for {}:\n\t{}'.format( RuntimeError: Error(s) in loading state_dict for AutoencoderKL: Missing key(s) in state_dict: "encoder.conv_in.weight", "encoder.conv_in.bias", "encoder.down.0.block.0.norm1.weight", "encoder.down.0.block.0.norm1.bias", "encoder.down.0.block.0.conv1.weight", "encoder.down.0.block.0.conv1.bias", "encoder.down.0.block.0.norm2.weight", "encoder.down.0.block.0.norm2.bias", "encoder.down.0.block.0.conv2.weight", "encoder.down.0.block.0.conv2.bias", "encoder.down.0.block.1.norm1.weight", "encoder.down.0.block.1.norm1.bias", "encoder.down.0.block.1.conv1.weight", "encoder.down.0.block.1.conv1.bias", "encoder.down.0.block.1.norm2.weight", "encoder.down.0.block.1.norm2.bias", "encoder.down.0.block.1.conv2.weight", "encoder.down.0.block.1.conv2.bias", "encoder.down.0.downsample.conv.weight", "encoder.down.0.downsample.conv.bias", "encoder.down.1.block.0.norm1.weight", "encoder.down.1.block.0.norm1.bias", "encoder.down.1.block.0.conv1.weight", "encoder.down.1.block.0.conv1.bias", "encoder.down.1.block.0.norm2.weight", "encoder.down.1.block.0.norm2.bias", "encoder.down.1.block.0.conv2.weight", "encoder.down.1.block.0.conv2.bias", "encoder.down.1.block.0.nin_shortcut.weight", "encoder.down.1.block.0.nin_shortcut.bias", "encoder.down.1.block.1.norm1.weight", "encoder.down.1.block.1.norm1.bias", "encoder.down.1.block.1.conv1.weight", "encoder.down.1.block.1.conv1.bias", "encoder.down.1.block.1.norm2.weight", "encoder.down.1.block.1.norm2.bias", "encoder.down.1.block.1.conv2.weight", "encoder.down.1.block.1.conv2.bias", "encoder.down.1.downsample.conv.weight", "encoder.down.1.downsample.conv.bias", "encoder.down.2.block.0.norm1.weight", "encoder.down.2.block.0.norm1.bias", "encoder.down.2.block.0.conv1.weight", "encoder.down.2.block.0.conv1.bias", "encoder.down.2.block.0.norm2.weight", "encoder.down.2.block.0.norm2.bias", "encoder.down.2.block.0.conv2.weight", "encoder.down.2.block.0.conv2.bias", "encoder.down.2.block.0.nin_shortcut.weight", "encoder.down.2.block.0.nin_shortcut.bias", "encoder.down.2.block.1.norm1.weight", "encoder.down.2.block.1.norm1.bias", "encoder.down.2.block.1.conv1.weight", "encoder.down.2.block.1.conv1.bias", "encoder.down.2.block.1.norm2.weight", "encoder.down.2.block.1.norm2.bias", "encoder.down.2.block.1.conv2.weight", "encoder.down.2.block.1.conv2.bias", "encoder.down.2.downsample.conv.weight", "encoder.down.2.downsample.conv.bias", "encoder.down.3.block.0.norm1.weight", "encoder.down.3.block.0.norm1.bias", "encoder.down.3.block.0.conv1.weight", "encoder.down.3.block.0.conv1.bias", "encoder.down.3.block.0.norm2.weight", "encoder.down.3.block.0.norm2.bias", "encoder.down.3.block.0.conv2.weight", "encoder.down.3.block.0.conv2.bias", "encoder.down.3.block.1.norm1.weight", "encoder.down.3.block.1.norm1.bias", "encoder.down.3.block.1.conv1.weight", "encoder.down.3.block.1.conv1.bias", "encoder.down.3.block.1.norm2.weight", "encoder.down.3.block.1.norm2.bias", "encoder.down.3.block.1.conv2.weight", "encoder.down.3.block.1.conv2.bias", "encoder.mid.block_1.norm1.weight", "encoder.mid.block_1.norm1.bias", "encoder.mid.block_1.conv1.weight", "encoder.mid.block_1.conv1.bias", "encoder.mid.block_1.norm2.weight", "encoder.mid.block_1.norm2.bias", "encoder.mid.block_1.conv2.weight", "encoder.mid.block_1.conv2.bias", "encoder.mid.attn_1.norm.weight", "encoder.mid.attn_1.norm.bias", "encoder.mid.attn_1.q.weight", "encoder.mid.attn_1.q.bias", "encoder.mid.attn_1.k.weight", "encoder.mid.attn_1.k.bias", "encoder.mid.attn_1.v.weight", "encoder.mid.attn_1.v.bias", "encoder.mid.attn_1.proj_out.weight", "encoder.mid.attn_1.proj_out.bias", "encoder.mid.block_2.norm1.weight", "encoder.mid.block_2.norm1.bias", "encoder.mid.block_2.conv1.weight", "encoder.mid.block_2.conv1.bias", "encoder.mid.block_2.norm2.weight", "encoder.mid.block_2.norm2.bias", "encoder.mid.block_2.conv2.weight", "encoder.mid.block_2.conv2.bias", "encoder.norm_out.weight", "encoder.norm_out.bias", "encoder.conv_out.weight", "encoder.conv_out.bias", "decoder.conv_in.weight", "decoder.conv_in.bias", "decoder.mid.block_1.norm1.weight", "decoder.mid.block_1.norm1.bias", "decoder.mid.block_1.conv1.weight", "decoder.mid.block_1.conv1.bias", "decoder.mid.block_1.norm2.weight", "decoder.mid.block_1.norm2.bias", "decoder.mid.block_1.conv2.weight", "decoder.mid.block_1.conv2.bias", "decoder.mid.attn_1.norm.weight", "decoder.mid.attn_1.norm.bias", "decoder.mid.attn_1.q.weight", "decoder.mid.attn_1.q.bias", "decoder.mid.attn_1.k.weight", "decoder.mid.attn_1.k.bias", "decoder.mid.attn_1.v.weight", "decoder.mid.attn_1.v.bias", "decoder.mid.attn_1.proj_out.weight", "decoder.mid.attn_1.proj_out.bias", "decoder.mid.block_2.norm1.weight", "decoder.mid.block_2.norm1.bias", "decoder.mid.block_2.conv1.weight", "decoder.mid.block_2.conv1.bias", "decoder.mid.block_2.norm2.weight", "decoder.mid.block_2.norm2.bias", "decoder.mid.block_2.conv2.weight", "decoder.mid.block_2.conv2.bias", "decoder.up.0.block.0.norm1.weight", "decoder.up.0.block.0.norm1.bias", "decoder.up.0.block.0.conv1.weight", "decoder.up.0.block.0.conv1.bias", "decoder.up.0.block.0.norm2.weight", "decoder.up.0.block.0.norm2.bias", "decoder.up.0.block.0.conv2.weight", "decoder.up.0.block.0.conv2.bias", "decoder.up.0.block.0.nin_shortcut.weight", "decoder.up.0.block.0.nin_shortcut.bias", "decoder.up.0.block.1.norm1.weight", "decoder.up.0.block.1.norm1.bias", "decoder.up.0.block.1.conv1.weight", "decoder.up.0.block.1.conv1.bias", "decoder.up.0.block.1.norm2.weight", "decoder.up.0.block.1.norm2.bias", "decoder.up.0.block.1.conv2.weight", "decoder.up.0.block.1.conv2.bias", "decoder.up.0.block.2.norm1.weight", "decoder.up.0.block.2.norm1.bias", "decoder.up.0.block.2.conv1.weight", "decoder.up.0.block.2.conv1.bias", "decoder.up.0.block.2.norm2.weight", "decoder.up.0.block.2.norm2.bias", "decoder.up.0.block.2.conv2.weight", "decoder.up.0.block.2.conv2.bias", "decoder.up.1.block.0.norm1.weight", "decoder.up.1.block.0.norm1.bias", "decoder.up.1.block.0.conv1.weight", "decoder.up.1.block.0.conv1.bias", "decoder.up.1.block.0.norm2.weight", "decoder.up.1.block.0.norm2.bias", "decoder.up.1.block.0.conv2.weight", "decoder.up.1.block.0.conv2.bias", "decoder.up.1.block.0.nin_shortcut.weight", "decoder.up.1.block.0.nin_shortcut.bias", "decoder.up.1.block.1.norm1.weight", "decoder.up.1.block.1.norm1.bias", "decoder.up.1.block.1.conv1.weight", "decoder.up.1.block.1.conv1.bias", "decoder.up.1.block.1.norm2.weight", "decoder.up.1.block.1.norm2.bias", "decoder.up.1.block.1.conv2.weight", "decoder.up.1.block.1.conv2.bias", "decoder.up.1.block.2.norm1.weight", "decoder.up.1.block.2.norm1.bias", "decoder.up.1.block.2.conv1.weight", "decoder.up.1.block.2.conv1.bias", "decoder.up.1.block.2.norm2.weight", "decoder.up.1.block.2.norm2.bias", "decoder.up.1.block.2.conv2.weight", "decoder.up.1.block.2.conv2.bias", "decoder.up.1.upsample.conv.weight", "decoder.up.1.upsample.conv.bias", "decoder.up.2.block.0.norm1.weight", "decoder.up.2.block.0.norm1.bias", "decoder.up.2.block.0.conv1.weight", "decoder.up.2.block.0.conv1.bias", "decoder.up.2.block.0.norm2.weight", "decoder.up.2.block.0.norm2.bias", "decoder.up.2.block.0.conv2.weight", "decoder.up.2.block.0.conv2.bias", "decoder.up.2.block.1.norm1.weight", "decoder.up.2.block.1.norm1.bias", "decoder.up.2.block.1.conv1.weight", "decoder.up.2.block.1.conv1.bias", "decoder.up.2.block.1.norm2.weight", "decoder.up.2.block.1.norm2.bias", "decoder.up.2.block.1.conv2.weight", "decoder.up.2.block.1.conv2.bias", "decoder.up.2.block.2.norm1.weight", "decoder.up.2.block.2.norm1.bias", "decoder.up.2.block.2.conv1.weight", "decoder.up.2.block.2.conv1.bias", "decoder.up.2.block.2.norm2.weight", "decoder.up.2.block.2.norm2.bias", "decoder.up.2.block.2.conv2.weight", "decoder.up.2.block.2.conv2.bias", "decoder.up.2.upsample.conv.weight", "decoder.up.2.upsample.conv.bias", "decoder.up.3.block.0.norm1.weight", "decoder.up.3.block.0.norm1.bias", "decoder.up.3.block.0.conv1.weight", "decoder.up.3.block.0.conv1.bias", "decoder.up.3.block.0.norm2.weight", "decoder.up.3.block.0.norm2.bias", "decoder.up.3.block.0.conv2.weight", "decoder.up.3.block.0.conv2.bias", "decoder.up.3.block.1.norm1.weight", "decoder.up.3.block.1.norm1.bias", "decoder.up.3.block.1.conv1.weight", "decoder.up.3.block.1.conv1.bias", "decoder.up.3.block.1.norm2.weight", "decoder.up.3.block.1.norm2.bias", "decoder.up.3.block.1.conv2.weight", "decoder.up.3.block.1.conv2.bias", "decoder.up.3.block.2.norm1.weight", "decoder.up.3.block.2.norm1.bias", "decoder.up.3.block.2.conv1.weight", "decoder.up.3.block.2.conv1.bias", "decoder.up.3.block.2.norm2.weight", "decoder.up.3.block.2.norm2.bias", "decoder.up.3.block.2.conv2.weight", "decoder.up.3.block.2.conv2.bias", "decoder.up.3.upsample.conv.weight", "decoder.up.3.upsample.conv.bias", "decoder.norm_out.weight", "decoder.norm_out.bias", "decoder.conv_out.weight", "decoder.conv_out.bias", "quant_conv.weight", "quant_conv.bias", "post_quant_conv.weight", "post_quant_conv.bias". Unexpected key(s) in state_dict: "epoch", "global_step", "pytorch-lightning_version", "state_dict", "callbacks", "lr_schedulers", "native_amp_scaling_state".
Hey, did you manage to solve this issue?
use the modelscope VAE, UNet and text encoder weights as README suggest, but crashed while loading vae