Closed Devetec closed 4 years ago
Can you post the contents of checkpoints/deep_fashion/warp/args.json
? Is there a model
in there?
The checkpoint did not come with one, so I tried to make one.
Why didn't it come with one?
@KingOfCoders The checkpoint should be created throughout training, and args.json should be stored immediately after running train.py. Did that not happen when you tried it?
I tried to use the pretrained models...
Oops, that's an excellent point. Thank you for bringing that to my attention, I will upload the associated args.json with the checkpoints.
In the meantime, try these
warp/args.json
{
"config_file": null,
"name": "deep_fashion/warp",
"comments": "",
"verbose": false,
"display_winsize": 256,
"checkpoints_dir": "./checkpoints",
"load_epoch": "latest",
"dataroot": "data/deep_fashion",
"dataset": "warp",
"dataset_mode": "image",
"cloth_representation": "labels",
"body_representation": "rgb",
"cloth_channels": 19,
"body_channels": 12,
"texture_channels": 3,
"pad": false,
"load_size": 128,
"crop_size": 128,
"crop_bounds": null,
"max_dataset_size": Infinity,
"batch_size": 8,
"shuffle_data": true,
"num_workers": 4,
"gpu_id": 0,
"no_confirm": true,
"model": "warp",
"continue_train": false,
"display_freq": 400,
"display_ncols": 4,
"display_id": 1,
"display_server": "http://localhost",
"display_env": "main",
"display_port": 8097,
"update_html_freq": 1000,
"print_freq": 100,
"no_html": false,
"n_epochs": 20,
"start_epoch": 0,
"sample_freq": null,
"checkpoint_freq": 2,
"latest_checkpoint_freq": 5120,
"save_by_iter": false,
"weight_decay": 0,
"init_type": "kaiming",
"init_gain": 0.02,
"warp_mode": "gan",
"lambda_ce": 100,
"gan_mode": "vanilla",
"lambda_gan": 1.0,
"lambda_gp": 10,
"discriminator": "basic",
"n_layers_D": 3,
"norm": "instance",
"optimizer_G": "AdamW",
"lr": 0.0001,
"beta1": 0.5,
"optimizer_D": "AdamW",
"d_lr": 0.0004,
"d_weight_decay": 0,
"gan_label_mode": "smooth",
"input_transforms": [
"hflip",
"vflip",
"affine",
"perspective"
],
"per_channel_transform": true,
"b1": 0.9,
"b2": 0.999,
"is_train": true
}
texture/args.json
{
"config_file": null,
"name": "deep_fashion/texture",
"comments": "",
"verbose": false,
"display_winsize": 256,
"checkpoints_dir": "./checkpoints",
"load_epoch": "latest",
"dataroot": "data/deep_fashion",
"dataset": "texture",
"dataset_mode": "image",
"cloth_representation": "labels",
"body_representation": "rgb",
"cloth_channels": 19,
"body_channels": 12,
"texture_channels": 3,
"netG": "swapnet",
"pad": false,
"load_size": 128,
"crop_size": 128,
"crop_bounds": null,
"max_dataset_size": Infinity,
"batch_size": 8,
"shuffle_data": true,
"num_workers": 4,
"gpu_id": 0,
"no_confirm": true,
"model": "texture",
"continue_train": false,
"display_freq": 400,
"display_ncols": 5,
"display_id": 1,
"display_server": "http://localhost",
"display_env": "main",
"display_port": 8097,
"update_html_freq": 1000,
"print_freq": 100,
"no_html": false,
"n_epochs": 20,
"start_epoch": 0,
"sample_freq": null,
"checkpoint_freq": 2,
"latest_checkpoint_freq": 5120,
"save_by_iter": false,
"weight_decay": 0,
"init_type": "kaiming",
"init_gain": 0.02,
"gan_mode": "vanilla",
"lambda_gan": 1.0,
"lambda_gp": 10,
"discriminator": "basic",
"n_layers_D": 3,
"norm": "instance",
"optimizer_G": "AdamW",
"lr": 0.0001,
"beta1": 0.5,
"optimizer_D": "AdamW",
"d_lr": 0.0004,
"d_weight_decay": 0,
"gan_label_mode": "smooth",
"lambda_l1": 10,
"lambda_feat": 0,
"input_transforms": [
"hflip",
"vflip"
],
"b1": 0.9,
"b2": 0.999,
"is_train": true
}
Hi Andrew, please add the args.json to the pretrained models download, I also ran into this a bit ago and saw it here just now. Thanks!
Ah you might have already added it - I realized my download from an older version of the readme.
Done. This is now in the download. Thanks everyone.
When I try to inference using the given command, I get this error:
with this command:
Might be related to #17, as your bugfix seems to have worked, but now I have another problem.