apache / echarts

Apache ECharts is a powerful, interactive charting and data visualization library for browser
https://echarts.apache.org
Apache License 2.0
60.65k stars 19.61k forks source link

Zoom thermal map, the label on the left is misplaced #13607

Closed learnningUser closed 1 year ago

learnningUser commented 4 years ago

Version

4.9.0

Steps to reproduce

Add zoom attribute style to div of thermal diagram, and the left click label will be misplaced

What is expected?

No matter how much scale the div, the tags click on will not be misplaced

What is actually happening?

scale the div of thermal diagram,left click label will be misplaced

### Version 4.9.0 ### Steps to reproduce Add zoom attribute style to div of thermal diagram, and the left click label will be misplaced ### What is expected? No matter how much scale the div, the tags click on will not be misplaced ### What is actually happening? scale the div of thermal diagram,left click label will be misplaced

b2190aad4d599e95ca9e22f0ef55120

echarts-bot[bot] commented 4 years ago

Hi! We've received your issue and please be patient to get responded. 🎉 The average response time is expected to be within one day for weekdays.

In the meanwhile, please make sure that you have posted enough image to demo your request. You may also check out the API and chart option to get the answer.

If you don't get helped for a long time (over a week) or have an urgent question to ask, you may also send an email to dev@echarts.apache.org. Please attach the issue link if it's a technical question.

If you are interested in the project, you may also subscribe our mailing list.

Have a nice day! 🍵

echarts-bot[bot] commented 4 years ago

@learnningUser Please provide a demo for the issue either with https://codepen.io/Ovilia/pen/dyYWXWM or https://www.makeapie.com/editor.html.

learnningUser commented 4 years ago
var noise = getNoiseHelper();
var xData = [];
var yData = [];
noise.seed(Math.random());

function generateData(theta, min, max) {
    var data = [];
    for (var i = 0; i <= 200; i++) {
        for (var j = 0; j <= 100; j++) {
            // var x = (max - min) * i / 200 + min;
            // var y = (max - min) * j / 100 + min;
            data.push([i, j, noise.perlin2(i / 40, j / 20) + 0.5]);
            // data.push([i, j, normalDist(theta, x) * normalDist(theta, y)]);
        }
        xData.push(i);
    }
    for (var j = 0; j < 100; j++) {
        yData.push(j);
    }
    return data;
}
var data = generateData(2, -5, 5);

option = {
    tooltip: {},
    grid: {
        right: 10,
        left: 140
    },
    xAxis: {
        type: 'category',
        data: xData
    },
    yAxis: {
        type: 'category',
        data: yData
    },
    visualMap: {
        type: 'piecewise',
        min: 0,
        max: 1,
        calculable: true,
        realtime: false,
        splitNumber: 8,
        inRange: {
            color: ['#313695', '#4575b4', '#74add1', '#abd9e9', '#e0f3f8', '#ffffbf', '#fee090', '#fdae61', '#f46d43', '#d73027', '#a50026']
        }
    },
    legend: {
        selectedMode: false
    },
    series: [{
        name: 'Gaussian',
        type: 'heatmap',
        data: data,
        emphasis: {
            itemStyle: {
                borderColor: '#333',
                borderWidth: 1
            }
        },
        progressive: 1000,
        animation: false
    }]
};

$('#chart-panel').css('zoom', 1.03);
///////////////////////////////////////////////////////////////////////////
// Simplex and perlin noise helper from https://github.com/josephg/noisejs
///////////////////////////////////////////////////////////////////////////
function getNoiseHelper(global) {

    var module = {};

    function Grad(x, y, z) {
        this.x = x;
        this.y = y;
        this.z = z;
    }

    Grad.prototype.dot2 = function(x, y) {
        return this.x * x + this.y * y;
    };

    Grad.prototype.dot3 = function(x, y, z) {
        return this.x * x + this.y * y + this.z * z;
    };

    var grad3 = [new Grad(1, 1, 0), new Grad(-1, 1, 0), new Grad(1, -1, 0), new Grad(-1, -1, 0),
        new Grad(1, 0, 1), new Grad(-1, 0, 1), new Grad(1, 0, -1), new Grad(-1, 0, -1),
        new Grad(0, 1, 1), new Grad(0, -1, 1), new Grad(0, 1, -1), new Grad(0, -1, -1)
    ];

    var p = [151, 160, 137, 91, 90, 15,
        131, 13, 201, 95, 96, 53, 194, 233, 7, 225, 140, 36, 103, 30, 69, 142, 8, 99, 37, 240, 21, 10, 23,
        190, 6, 148, 247, 120, 234, 75, 0, 26, 197, 62, 94, 252, 219, 203, 117, 35, 11, 32, 57, 177, 33,
        88, 237, 149, 56, 87, 174, 20, 125, 136, 171, 168, 68, 175, 74, 165, 71, 134, 139, 48, 27, 166,
        77, 146, 158, 231, 83, 111, 229, 122, 60, 211, 133, 230, 220, 105, 92, 41, 55, 46, 245, 40, 244,
        102, 143, 54, 65, 25, 63, 161, 1, 216, 80, 73, 209, 76, 132, 187, 208, 89, 18, 169, 200, 196,
        135, 130, 116, 188, 159, 86, 164, 100, 109, 198, 173, 186, 3, 64, 52, 217, 226, 250, 124, 123,
        5, 202, 38, 147, 118, 126, 255, 82, 85, 212, 207, 206, 59, 227, 47, 16, 58, 17, 182, 189, 28, 42,
        223, 183, 170, 213, 119, 248, 152, 2, 44, 154, 163, 70, 221, 153, 101, 155, 167, 43, 172, 9,
        129, 22, 39, 253, 19, 98, 108, 110, 79, 113, 224, 232, 178, 185, 112, 104, 218, 246, 97, 228,
        251, 34, 242, 193, 238, 210, 144, 12, 191, 179, 162, 241, 81, 51, 145, 235, 249, 14, 239, 107,
        49, 192, 214, 31, 181, 199, 106, 157, 184, 84, 204, 176, 115, 121, 50, 45, 127, 4, 150, 254,
        138, 236, 205, 93, 222, 114, 67, 29, 24, 72, 243, 141, 128, 195, 78, 66, 215, 61, 156, 180
    ];
    // To remove the need for index wrapping, double the permutation table length
    var perm = new Array(512);
    var gradP = new Array(512);

    // This isn't a very good seeding function, but it works ok. It supports 2^16
    // different seed values. Write something better if you need more seeds.
    module.seed = function(seed) {
        if (seed > 0 && seed < 1) {
            // Scale the seed out
            seed *= 65536;
        }

        seed = Math.floor(seed);
        if (seed < 256) {
            seed |= seed << 8;
        }

        for (var i = 0; i < 256; i++) {
            var v;
            if (i & 1) {
                v = p[i] ^ (seed & 255);
            } else {
                v = p[i] ^ ((seed >> 8) & 255);
            }

            perm[i] = perm[i + 256] = v;
            gradP[i] = gradP[i + 256] = grad3[v % 12];
        }
    };

    module.seed(0);

    /*
    for(var i=0; i<256; i++) {
      perm[i] = perm[i + 256] = p[i];
      gradP[i] = gradP[i + 256] = grad3[perm[i] % 12];
    }*/

    // Skewing and unskewing factors for 2, 3, and 4 dimensions
    var F2 = 0.5 * (Math.sqrt(3) - 1);
    var G2 = (3 - Math.sqrt(3)) / 6;

    var F3 = 1 / 3;
    var G3 = 1 / 6;

    // 2D simplex noise
    module.simplex2 = function(xin, yin) {
        var n0, n1, n2; // Noise contributions from the three corners
        // Skew the input space to determine which simplex cell we're in
        var s = (xin + yin) * F2; // Hairy factor for 2D
        var i = Math.floor(xin + s);
        var j = Math.floor(yin + s);
        var t = (i + j) * G2;
        var x0 = xin - i + t; // The x,y distances from the cell origin, unskewed.
        var y0 = yin - j + t;
        // For the 2D case, the simplex shape is an equilateral triangle.
        // Determine which simplex we are in.
        var i1, j1; // Offsets for second (middle) corner of simplex in (i,j) coords
        if (x0 > y0) { // lower triangle, XY order: (0,0)->(1,0)->(1,1)
            i1 = 1;
            j1 = 0;
        } else { // upper triangle, YX order: (0,0)->(0,1)->(1,1)
            i1 = 0;
            j1 = 1;
        }
        // A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and
        // a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where
        // c = (3-sqrt(3))/6
        var x1 = x0 - i1 + G2; // Offsets for middle corner in (x,y) unskewed coords
        var y1 = y0 - j1 + G2;
        var x2 = x0 - 1 + 2 * G2; // Offsets for last corner in (x,y) unskewed coords
        var y2 = y0 - 1 + 2 * G2;
        // Work out the hashed gradient indices of the three simplex corners
        i &= 255;
        j &= 255;
        var gi0 = gradP[i + perm[j]];
        var gi1 = gradP[i + i1 + perm[j + j1]];
        var gi2 = gradP[i + 1 + perm[j + 1]];
        // Calculate the contribution from the three corners
        var t0 = 0.5 - x0 * x0 - y0 * y0;
        if (t0 < 0) {
            n0 = 0;
        } else {
            t0 *= t0;
            n0 = t0 * t0 * gi0.dot2(x0, y0); // (x,y) of grad3 used for 2D gradient
        }
        var t1 = 0.5 - x1 * x1 - y1 * y1;
        if (t1 < 0) {
            n1 = 0;
        } else {
            t1 *= t1;
            n1 = t1 * t1 * gi1.dot2(x1, y1);
        }
        var t2 = 0.5 - x2 * x2 - y2 * y2;
        if (t2 < 0) {
            n2 = 0;
        } else {
            t2 *= t2;
            n2 = t2 * t2 * gi2.dot2(x2, y2);
        }
        // Add contributions from each corner to get the final noise value.
        // The result is scaled to return values in the interval [-1,1].
        return 70 * (n0 + n1 + n2);
    };

    // 3D simplex noise
    module.simplex3 = function(xin, yin, zin) {
        var n0, n1, n2, n3; // Noise contributions from the four corners

        // Skew the input space to determine which simplex cell we're in
        var s = (xin + yin + zin) * F3; // Hairy factor for 2D
        var i = Math.floor(xin + s);
        var j = Math.floor(yin + s);
        var k = Math.floor(zin + s);

        var t = (i + j + k) * G3;
        var x0 = xin - i + t; // The x,y distances from the cell origin, unskewed.
        var y0 = yin - j + t;
        var z0 = zin - k + t;

        // For the 3D case, the simplex shape is a slightly irregular tetrahedron.
        // Determine which simplex we are in.
        var i1, j1, k1; // Offsets for second corner of simplex in (i,j,k) coords
        var i2, j2, k2; // Offsets for third corner of simplex in (i,j,k) coords
        if (x0 >= y0) {
            if (y0 >= z0) {
                i1 = 1;
                j1 = 0;
                k1 = 0;
                i2 = 1;
                j2 = 1;
                k2 = 0;
            } else if (x0 >= z0) {
                i1 = 1;
                j1 = 0;
                k1 = 0;
                i2 = 1;
                j2 = 0;
                k2 = 1;
            } else {
                i1 = 0;
                j1 = 0;
                k1 = 1;
                i2 = 1;
                j2 = 0;
                k2 = 1;
            }
        } else {
            if (y0 < z0) {
                i1 = 0;
                j1 = 0;
                k1 = 1;
                i2 = 0;
                j2 = 1;
                k2 = 1;
            } else if (x0 < z0) {
                i1 = 0;
                j1 = 1;
                k1 = 0;
                i2 = 0;
                j2 = 1;
                k2 = 1;
            } else {
                i1 = 0;
                j1 = 1;
                k1 = 0;
                i2 = 1;
                j2 = 1;
                k2 = 0;
            }
        }
        // A step of (1,0,0) in (i,j,k) means a step of (1-c,-c,-c) in (x,y,z),
        // a step of (0,1,0) in (i,j,k) means a step of (-c,1-c,-c) in (x,y,z), and
        // a step of (0,0,1) in (i,j,k) means a step of (-c,-c,1-c) in (x,y,z), where
        // c = 1/6.
        var x1 = x0 - i1 + G3; // Offsets for second corner
        var y1 = y0 - j1 + G3;
        var z1 = z0 - k1 + G3;

        var x2 = x0 - i2 + 2 * G3; // Offsets for third corner
        var y2 = y0 - j2 + 2 * G3;
        var z2 = z0 - k2 + 2 * G3;

        var x3 = x0 - 1 + 3 * G3; // Offsets for fourth corner
        var y3 = y0 - 1 + 3 * G3;
        var z3 = z0 - 1 + 3 * G3;

        // Work out the hashed gradient indices of the four simplex corners
        i &= 255;
        j &= 255;
        k &= 255;
        var gi0 = gradP[i + perm[j + perm[k]]];
        var gi1 = gradP[i + i1 + perm[j + j1 + perm[k + k1]]];
        var gi2 = gradP[i + i2 + perm[j + j2 + perm[k + k2]]];
        var gi3 = gradP[i + 1 + perm[j + 1 + perm[k + 1]]];

        // Calculate the contribution from the four corners
        var t0 = 0.6 - x0 * x0 - y0 * y0 - z0 * z0;
        if (t0 < 0) {
            n0 = 0;
        } else {
            t0 *= t0;
            n0 = t0 * t0 * gi0.dot3(x0, y0, z0); // (x,y) of grad3 used for 2D gradient
        }
        var t1 = 0.6 - x1 * x1 - y1 * y1 - z1 * z1;
        if (t1 < 0) {
            n1 = 0;
        } else {
            t1 *= t1;
            n1 = t1 * t1 * gi1.dot3(x1, y1, z1);
        }
        var t2 = 0.6 - x2 * x2 - y2 * y2 - z2 * z2;
        if (t2 < 0) {
            n2 = 0;
        } else {
            t2 *= t2;
            n2 = t2 * t2 * gi2.dot3(x2, y2, z2);
        }
        var t3 = 0.6 - x3 * x3 - y3 * y3 - z3 * z3;
        if (t3 < 0) {
            n3 = 0;
        } else {
            t3 *= t3;
            n3 = t3 * t3 * gi3.dot3(x3, y3, z3);
        }
        // Add contributions from each corner to get the final noise value.
        // The result is scaled to return values in the interval [-1,1].
        return 32 * (n0 + n1 + n2 + n3);

    };

    // ##### Perlin noise stuff

    function fade(t) {
        return t * t * t * (t * (t * 6 - 15) + 10);
    }

    function lerp(a, b, t) {
        return (1 - t) * a + t * b;
    }

    // 2D Perlin Noise
    module.perlin2 = function(x, y) {
        // Find unit grid cell containing point
        var X = Math.floor(x),
            Y = Math.floor(y);
        // Get relative xy coordinates of point within that cell
        x = x - X;
        y = y - Y;
        // Wrap the integer cells at 255 (smaller integer period can be introduced here)
        X = X & 255;
        Y = Y & 255;

        // Calculate noise contributions from each of the four corners
        var n00 = gradP[X + perm[Y]].dot2(x, y);
        var n01 = gradP[X + perm[Y + 1]].dot2(x, y - 1);
        var n10 = gradP[X + 1 + perm[Y]].dot2(x - 1, y);
        var n11 = gradP[X + 1 + perm[Y + 1]].dot2(x - 1, y - 1);

        // Compute the fade curve value for x
        var u = fade(x);

        // Interpolate the four results
        return lerp(
            lerp(n00, n10, u),
            lerp(n01, n11, u),
            fade(y));
    };

    // 3D Perlin Noise
    module.perlin3 = function(x, y, z) {
        // Find unit grid cell containing point
        var X = Math.floor(x),
            Y = Math.floor(y),
            Z = Math.floor(z);
        // Get relative xyz coordinates of point within that cell
        x = x - X;
        y = y - Y;
        z = z - Z;
        // Wrap the integer cells at 255 (smaller integer period can be introduced here)
        X = X & 255;
        Y = Y & 255;
        Z = Z & 255;

        // Calculate noise contributions from each of the eight corners
        var n000 = gradP[X + perm[Y + perm[Z]]].dot3(x, y, z);
        var n001 = gradP[X + perm[Y + perm[Z + 1]]].dot3(x, y, z - 1);
        var n010 = gradP[X + perm[Y + 1 + perm[Z]]].dot3(x, y - 1, z);
        var n011 = gradP[X + perm[Y + 1 + perm[Z + 1]]].dot3(x, y - 1, z - 1);
        var n100 = gradP[X + 1 + perm[Y + perm[Z]]].dot3(x - 1, y, z);
        var n101 = gradP[X + 1 + perm[Y + perm[Z + 1]]].dot3(x - 1, y, z - 1);
        var n110 = gradP[X + 1 + perm[Y + 1 + perm[Z]]].dot3(x - 1, y - 1, z);
        var n111 = gradP[X + 1 + perm[Y + 1 + perm[Z + 1]]].dot3(x - 1, y - 1, z - 1);

        // Compute the fade curve value for x, y, z
        var u = fade(x);
        var v = fade(y);
        var w = fade(z);

        // Interpolate
        return lerp(
            lerp(
                lerp(n000, n100, u),
                lerp(n001, n101, u), w),
            lerp(
                lerp(n010, n110, u),
                lerp(n011, n111, u), w),
            v);
    };

    return module;
}
github-actions[bot] commented 1 year ago

This issue has been automatically marked as stale because it did not have recent activity. It will be closed in 7 days if no further activity occurs. If you wish not to mark it as stale, please leave a comment in this issue.

github-actions[bot] commented 1 year ago

This issue has been automatically closed because it did not have recent activity. If this remains to be a problem with the latest version of Apache ECharts, please open a new issue and link this to it. Thanks!