Closed kaleshkk closed 1 year ago
Yeah, the deletion just creates a new commit in Hudi table, if you want to drop the whole partition, using the Spark catalog and specifys the purge option as true.
Hi @danny0405 , Thanks for suggestion I changed my hudi configuration with purge enabled. Still it not removing the partitions. hudiOptions = { 'hoodie.table.name': "table1", 'hoodie.datasource.write.recordkey.field': "hudi_key", 'hoodie.datasource.write.table.name': "table1", 'hoodie.datasource.write.precombine.field': "ts", 'hoodie.datasource.write.partitionpath.field': 'run_date', 'hoodie.datasource.write.hive_style_partitioning': "true", 'hoodie.datasource.write.drop.partition.columns':'true', 'hoodie.datasource.write.operation': "delete", 'hoodie.datasource.write.table.type': "COPY_ON_WRITE", 'hoodie.datasource.write.keygenerator.class': 'org.apache.hudi.keygen.ComplexKeyGenerator', 'hoodie.datasource.write.purge.enabled': 'true' }
It only works under the hudi catalog with spark SQL, the data frame api can not achive the gole.
cleaner should clean or purge older files are we talking about deletion of partition if yes here is video https://www.youtube.com/watch?v=QqCiycIgSFk
"""
Author : Soumil Nitin Shah
Email shahsoumil519@gmail.com
--additional-python-modules | faker==11.3.0
--conf | spark.serializer=org.apache.spark.serializer.KryoSerializer --conf spark.sql.hive.convertMetastoreParquet=false --conf spark.sql.hive.convertMetastoreParquet=false --conf spark.sql.catalog.spark_catalog=org.apache.spark.sql.hudi.catalog.HoodieCatalog --conf spark.sql.legacy.pathOptionBehavior.enabled=true --conf spark.sql.extensions=org.apache.spark.sql.hudi.HoodieSparkSessionExtension
--datalake-formats | hudi
"""
try:
import sys, os, ast, uuid, boto3, datetime, time, re, json
from ast import literal_eval
from dataclasses import dataclass
from datetime import datetime
from pyspark.sql.functions import lit, udf
from pyspark.sql.types import StringType
from pyspark.context import SparkContext
from pyspark.sql.session import SparkSession
from awsglue.context import GlueContext
from awsglue.job import Job
from awsglue.dynamicframe import DynamicFrame
from pyspark.sql.functions import col, to_timestamp, monotonically_increasing_id, to_date, when
from pyspark.sql.functions import *
from awsglue.utils import getResolvedOptions
from pyspark.sql.types import *
from faker import Faker
except Exception as e:
print("Modules are missing : {} ".format(e))
DYNAMODB_LOCK_TABLE_NAME = 'hudi-lock-table'
curr_session = boto3.session.Session()
curr_region = curr_session.region_name
# Get command-line arguments
args = getResolvedOptions(
sys.argv, [
'JOB_NAME',
],
)
spark = (SparkSession.builder.config('spark.serializer', 'org.apache.spark.serializer.KryoSerializer') \
.config('spark.sql.hive.convertMetastoreParquet', 'false') \
.config('spark.sql.catalog.spark_catalog', 'org.apache.spark.sql.hudi.catalog.HoodieCatalog') \
.config('spark.sql.extensions', 'org.apache.spark.sql.hudi.HoodieSparkSessionExtension') \
.config('spark.sql.legacy.pathOptionBehavior.enabled', 'true').getOrCreate())
# Create a Spark context and Glue context
sc = spark.sparkContext
glueContext = GlueContext(sc)
job = Job(glueContext)
logger = glueContext.get_logger()
job.init(args["JOB_NAME"], args)
def upsert_hudi_table(glue_database, table_name,
record_id, precomb_key, table_type, spark_df,partition_feild,
enable_partition, enable_cleaner, enable_hive_sync, enable_dynamodb_lock,
use_sql_transformer, sql_transformer_query,
target_path, index_type, method='upsert'):
"""
Upserts a dataframe into a Hudi table.
Args:
glue_database (str): The name of the glue database.
table_name (str): The name of the Hudi table.
record_id (str): The name of the field in the dataframe that will be used as the record key.
precomb_key (str): The name of the field in the dataframe that will be used for pre-combine.
table_type (str): The Hudi table type (e.g., COPY_ON_WRITE, MERGE_ON_READ).
spark_df (pyspark.sql.DataFrame): The dataframe to upsert.
enable_partition (bool): Whether or not to enable partitioning.
enable_cleaner (bool): Whether or not to enable data cleaning.
enable_hive_sync (bool): Whether or not to enable syncing with Hive.
use_sql_transformer (bool): Whether or not to use SQL to transform the dataframe before upserting.
sql_transformer_query (str): The SQL query to use for data transformation.
target_path (str): The path to the target Hudi table.
method (str): The Hudi write method to use (default is 'upsert').
index_type : BLOOM or GLOBAL_BLOOM
Returns:
None
"""
# These are the basic settings for the Hoodie table
hudi_final_settings = {
"hoodie.table.name": table_name,
"hoodie.datasource.write.table.type": table_type,
"hoodie.datasource.write.operation": method,
"hoodie.datasource.write.recordkey.field": record_id,
"hoodie.datasource.write.precombine.field": precomb_key,
}
# These settings enable syncing with Hive
hudi_hive_sync_settings = {
"hoodie.parquet.compression.codec": "gzip",
"hoodie.datasource.hive_sync.enable": "true",
"hoodie.datasource.hive_sync.database": glue_database,
"hoodie.datasource.hive_sync.table": table_name,
"hoodie.datasource.hive_sync.partition_extractor_class": "org.apache.hudi.hive.MultiPartKeysValueExtractor",
"hoodie.datasource.hive_sync.use_jdbc": "false",
"hoodie.datasource.hive_sync.mode": "hms",
}
# These settings enable automatic cleaning of old data
hudi_cleaner_options = {
"hoodie.clean.automatic": "true",
"hoodie.clean.async": "true",
"hoodie.cleaner.policy": 'KEEP_LATEST_FILE_VERSIONS',
"hoodie.cleaner.fileversions.retained": "3",
"hoodie-conf hoodie.cleaner.parallelism": '200',
'hoodie.cleaner.commits.retained': 5
}
# These settings enable partitioning of the data
partition_settings = {
"hoodie.datasource.write.partitionpath.field": partition_feild,
"hoodie.datasource.hive_sync.partition_fields": partition_feild,
"hoodie.datasource.write.hive_style_partitioning": "true",
}
# Define a dictionary with the index settings for Hudi
hudi_index_settings = {
"hoodie.index.type": index_type, # Specify the index type for Hudi
}
hudi_dynamo_db_based_lock = {
'hoodie.write.concurrency.mode': 'optimistic_concurrency_control'
, 'hoodie.cleaner.policy.failed.writes': 'LAZY'
, 'hoodie.write.lock.provider': 'org.apache.hudi.aws.transaction.lock.DynamoDBBasedLockProvider'
, 'hoodie.write.lock.dynamodb.table': DYNAMODB_LOCK_TABLE_NAME
, 'hoodie.write.lock.dynamodb.partition_key': 'tablename'
, 'hoodie.write.lock.dynamodb.region': '{0}'.format(curr_region)
, 'hoodie.write.lock.dynamodb.endpoint_url': 'dynamodb.{0}.amazonaws.com'.format(curr_region)
, 'hoodie.write.lock.dynamodb.billing_mode': 'PAY_PER_REQUEST'
}
hudi_file_size = {
"hoodie.parquet.max.file.size": 512 * 1024 * 1024, # 512MB
"hoodie.parquet.small.file.limit": 104857600, # 100MB
}
# Add the Hudi index settings to the final settings dictionary
for key, value in hudi_index_settings.items():
hudi_final_settings[key] = value # Add the key-value pair to the final settings dictionary
for key, value in hudi_file_size.items():
hudi_final_settings[key] = value
# If partitioning is enabled, add the partition settings to the final settings
if enable_partition == "True" or enable_partition == "true" or enable_partition == True:
for key, value in partition_settings.items(): hudi_final_settings[key] = value
# if DynamoDB based lock enabled use dynamodb as lock table
if enable_dynamodb_lock == "True" or enable_dynamodb_lock == "true" or enable_dynamodb_lock == True:
for key, value in hudi_dynamo_db_based_lock.items(): hudi_final_settings[key] = value
# If data cleaning is enabled, add the cleaner options to the final settings
if enable_cleaner == "True" or enable_cleaner == "true" or enable_cleaner == True:
for key, value in hudi_cleaner_options.items(): hudi_final_settings[key] = value
# If Hive syncing is enabled, add the Hive sync settings to the final settings
if enable_hive_sync == "True" or enable_hive_sync == "true" or enable_hive_sync == True:
for key, value in hudi_hive_sync_settings.items(): hudi_final_settings[key] = value
# If there is data to write, apply any SQL transformations and write to the target path
if spark_df.count() > 0:
if use_sql_transformer == "True" or use_sql_transformer == "true" or use_sql_transformer == True:
spark_df.createOrReplaceTempView("temp")
spark_df = spark.sql(sql_transformer_query)
spark_df.write.format("hudi"). \
options(**hudi_final_settings). \
mode("append"). \
save(target_path)
global faker
faker = Faker()
def get_customer_data(total_customers=2):
customers_array = []
for i in range(0, total_customers):
customer_data = {
"customer_id": i,
"name": faker.name(),
"state": faker.state(),
"city": faker.city(),
"email": faker.email(),
"ts": datetime.now().isoformat().__str__()
}
customers_array.append(customer_data)
return customers_array
# total_customers = 100
#
# customer_data = get_customer_data(total_customers=total_customers)
# spark_df_customers = spark.createDataFrame(data=[tuple(i.values()) for i in customer_data],
# schema=list(customer_data[0].keys()))
# print(spark_df_customers.show(truncate=False))
path = "s3://soumilshah-hudi-demos/silver/table_name=customers"
# upsert_hudi_table(
# glue_database="hudidb",
# table_name="customers",
# record_id="customer_id",
# precomb_key="ts",
# partition_feild='state',
# table_type="COPY_ON_WRITE",
# method='upsert',
# index_type="BLOOM",
# enable_partition="True",
# enable_cleaner="True",
# enable_hive_sync="True",
# enable_dynamodb_lock="False",
# use_sql_transformer="False",
# sql_transformer_query="default",
# target_path=path,
# spark_df=spark_df_customers,
# )
# ============DELETE PARTITION ================
# ============DELETE PARTITION ================
print(
"Connecticut", spark.read.format("hudi").load(path).where("state='Connecticut'").count()
)
hudi_options = {}
try:
spark.createDataFrame([], StructType([])) \
.write \
.format("org.apache.hudi") \
.options(**hudi_options) \
.option("hoodie.datasource.hive_sync.enable", False) \
.option("hoodie.datasource.write.operation", "delete_partition") \
.option("hoodie.datasource.write.partitions.to.delete", "state=Connecticut") \
.mode("append") \
.save(path)
print("2.. ")
except Exception as e:
print("Error 2", e)
print(
"Connecticut ** ", spark.read.format("hudi").load(path).where("state='Connecticut'").count()
)
@kaleshkk Do you need any other help on this. As @danny0405 clarified that this will only be supported with spark sql only.
@kaleshkk Closing out this issue. Please reopen in case of any concerns.
Problem Description: I am using Apache Hudi's Copy-on-Write (CoW) table and have implemented a data pipeline to remove complete partitions from the table. However, I have noticed that the physical files associated with the deleted partitions are not being removed. A clear and concise description of the problem.
To Reproduce
Steps to reproduce the behavior: `hudiOptions = { 'hoodie.table.name': "table_name", 'hoodie.datasource.write.recordkey.field': "hudi_key", 'hoodie.datasource.write.table.name': "table_name", 'hoodie.datasource.write.precombine.field': "ts", 'hoodie.datasource.write.partitionpath.field': 'run_date', 'hoodie.datasource.write.hive_style_partitioning': "true", 'hoodie.datasource.write.drop.partition.columns':'true', 'hoodie.datasource.write.operation': "delete", 'hoodie.datasource.write.table.type': "COPY_ON_WRITE", 'hoodie.datasource.write.keygenerator.class': 'org.apache.hudi.keygen.ComplexKeyGenerator' }
removablePartions = ['20230608051260', '20230609043200'] deleteDataFrame = refinedDataFrame.filter(col("run_date").isin(removablePartions))
if deleteDataFrame.first() is not None: deleteDataFrame.write \ .format("org.apache.hudi") \ .options(hudiOptions) \ .mode("append") \ .save(f"s3://{s3Bucket}/{s3Prefix}")` Expected behavior**
I expect that when executing the code, the specified partitions would be removed from the Hudi table, including the associated physical files.
Environment Description
Hudi version : 0.12.1
Spark version : 3.3
Storage (HDFS/S3/GCS..) : S3
Running on Docker? (yes/no) : No