Closed rui-mo closed 1 year ago
The issue should be fixed by setting new recursion limit - by default it's only 100 https://github.com/protocolbuffers/protobuf/blob/main/java/core/src/main/java/com/google/protobuf/CodedInputStream.java#L390
The issue should be fixed by setting new recursion limit - by default it's only 100 https://github.com/protocolbuffers/protobuf/blob/main/java/core/src/main/java/com/google/protobuf/CodedInputStream.java#L390
@zhouyuan Yes, that's right. But since the java code is automatically generated with Substrait proto files, we do not have the access to this function. We still need to find a way to do that.
bumped into this too, this may only apply to debug build of gluten
23/07/07 18:28:17 ERROR TaskResources: Task 299 failed by error:
java.lang.RuntimeException: BinaryToJsonStream returned INVALID_ARGUMENT:Message too deep. Max recursion depth reached for type 'substrait.RelCommon', field 'common'
at io.glutenproject.vectorized.PlanEvaluatorJniWrapper.nativeCreateKernelWithIterator(Native Method)
at io.glutenproject.vectorized.NativePlanEvaluator.createKernelWithBatchIterator(NativePlanEvaluator.java:84)
at io.glutenproject.backendsapi.velox.IteratorHandler.genFinalStageIterator(IteratorHandler.scala:178)
at io.glutenproject.execution.WholeStageZippedPartitionsRDD.$anonfun$genFinalStageIterator$1(WholeStageZippedPartitionsRDD.scala:61)
at io.glutenproject.execution.WholeStageZippedPartitionsRDD.compute(WholeStageZippedPartitionsRDD.scala:70)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:373)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:337)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:373)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:337)
at org.apache.spark.shuffle.ShuffleWriteProcessor.write(ShuffleWriteProcessor.scala:59)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:99)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:52)
at org.apache.spark.scheduler.Task.run(Task.scala:131)
at org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$3(Executor.scala:506)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1491)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:509)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:750)
Is there any way to use a provided protobuf jar?
Another
Job aborted due to stage failure: Task 49 in stage 29.0 failed 1 times, most recent failure: Lost task 49.0 in stage 29.0 (TID 220) (55f8ad28c275 executor driver): java.lang.RuntimeException: BinaryToJsonStream returned INVALID_ARGUMENT:Message too deep. Max recursion depth reached for type 'substrait.Expression.ReferenceSegment.StructField', field 'structField'
at io.glutenproject.vectorized.PlanEvaluatorJniWrapper.nativeCreateKernelWithIterator(Native Method)
at io.glutenproject.vectorized.NativePlanEvaluator.createKernelWithBatchIterator(NativePlanEvaluator.java:91)
at io.glutenproject.backendsapi.velox.IteratorHandler.genFirstStageIterator(IteratorHandler.scala:157)
at io.glutenproject.execution.GlutenWholeStageColumnarRDD.compute(GlutenWholeStageColumnarRDD.scala:134)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:373)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:337)
at org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:373)
at org.apache.spark.rdd.RDD.iterator(RDD.scala:337)
at org.apache.spark.shuffle.ShuffleWriteProcessor.write(ShuffleWriteProcessor.scala:59)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:99)
at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:52)
at org.apache.spark.scheduler.Task.run(Task.scala:131)
at org.apache.spark.executor.Executor$TaskRunner.$anonfun$run$3(Executor.scala:506)
at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1491)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:509)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
at java.lang.Thread.run(Thread.java:750)
Describe the bug
To Reproduce
SELECT x2,x49,x18,x47,x29,x56,x60,x9,x31,x34,x53,x11
FROM t11,t9,t47,t56,t53,t60,t34,t2,t29,t18,t31,t49
WHERE a9=b11
AND b53=a11
AND a49=b9
AND a31=3
AND a60=b56
AND a56=b34
AND a29=b49
AND a2=b18
AND b2=a47
AND a34=b47
AND b29=a31
AND b60=a53